Research
My research is in the area of elliptic curve cryptography and related number-theoretic questions. I am interested in new cryptographic primitives, new algorithms in computational number theory, new protocols, efficient implementation, and cryptanalysis. The focus of my recent work is on post-quantum cryptography and isogeny-based cryptosystems.
[edit]
Journal articles
- Towards isogeny-based password-authenticated key establishment, with O. Taraskin, V. Soukharev, and J. LeGrow, J. Math. Cryptol. 15(1):18-30, 2021, doi:10.1515/jmc-2020-0071 (https://doi.org/10.1515/jmc-2020-0071) (open access).
- x-only point addition formula and faster compressed SIKE (https://eprint.iacr.org/2020/431), with G. Pereira and J. Doliskani, J. Cryptogr. Eng. (2020), doi:10.1007/s13389-020-00245-4 (https://doi.org/10.1007/s13389-020-00245-4).
- A subexponential-time, polynomial quantum space algorithm for inverting the CM group action, with J. LeGrow, C. Leonardi, and L. Ruiz-Lopez, J. Math. Cryptol. 14(1):129-138, 2020, doi:10.1515/jmc-2015-0057 (https://doi.org/10.1515/jmc-2015-0057) (open access).
- New Techniques for SIDH-based NIKE, with D. Urbanik, J. Math. Cryptol. 14(1):120-128, 2020, doi:10.1515/jmc-2015-0056 (https://doi.org/10.1515/jmc-2015-0056) (open access).
- ARMv8 SIKE: Optimized Supersingular Isogeny Key Encapsulation on ARMv8 processors (https://eprint.iacr.org/2019/331), with A. Jalali, R. Azarderakhsh, M. Mozaffari Kermani, and M. Campagna, IEEE Trans. Circuits Syst. I, Reg. Papers 66(11):4209-4218, 2019, doi:10.1109/TCSI.2019.2920869 (https://doi.org/10.1109/TCSI.2019.2920869).
- Supersingular Isogeny Diffie-Hellman Key Exchange on 64-bit ARM (https://djao.math.uwaterloo.ca/wiki/images/2/26/Tdsc-2019.pdf), with A. Jalali, R. Azarderakhsh, and M. Mozaffari-Kermani, IEEE T. Depend. Secure. 16(5):902-912, 2019, doi:10.1109/TDSC.2017.2723891 (https://dx.doi.org/10.1109/TDSC.2017.2723891).
- Fast software implementation of bilinear pairings (http://cacr.uwaterloo.ca/techreports/2016/cacr2016-03.pdf), with R. Azarderakhsh, D. Fishbein, G. Grewal, S. Hu, P. Longa, and R. Verma, IEEE T. Depend. Secure. 14(6):605-619, 2017, doi:10.1109/TDSC.2015.2507120 (https://dx.doi.org/10.1109/TDSC.2015.2507120).
- Post-quantum cryptography on FPGA based on isogenies on elliptic curves (https://eprint.iacr.org/2016/672), with B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, IEEE Trans. Circuits Syst. I, Reg. Papers 64(1):86-99, 2017, doi:10.1109/TCSI.2016.2611561 (https://dx.doi.org/10.1109/TCSI.2016.2611561).
- Common subexpression algorithms for space-complexity reduction of Gaussian normal basis multiplication (http://cacr.uwaterloo.ca/techreports/2015/cacr2015-03.pdf), with R. Azarderakhsh and H. Lee, IEEE Trans. Inf. Theory 61(5):2357-2369, 2015, doi:10.1109/TIT.2015.2409833 (https://dx.doi.org/10.1109/TIT.2015.2409833).
- Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies (https://eprint.iacr.org/2011/506), with L. De Feo and J. Plût, J. Math. Cryptol. 8(3):209-247, 2014, doi:10.1515/jmc-2012-0015 (https://dx.doi.org/10.1515/jmc-2012-0015).
- Constructing elliptic curve isogenies in quantum subexponential time (https://arxiv.org/abs/1012.4019), with A. Childs and V. Soukharev, J. Math. Cryptol. 8(1):1-29, 2014, doi:10.1515/jmc-2012-0016 (https://dx.doi.org/10.1515/jmc-2012-0016). Errata: Remark 5.5 in the arXiv version (respectively, Remark 4.6 in the published version) is incorrect as stated. For full discussion see https://eprint.iacr.org/2017/774 section 7.0.1. See also subsequent work of doi:10.1515/jmc-2015-0057 (https://doi.org/10.1515/jmc-2015-0057).
- Expander graphs based on GRH with an application to elliptic curve cryptography (https://arxiv.org/abs/0811.0647), with S. D. Miller and R. Venkatesan, J. Number Theory 129(6):1491-1504, 2009, doi:10.1016/j.jnt.2008.11.006 (https://dx.doi.org/10.1016/j.jnt.2008.11.006).
- Supersingular primes for points on X0(p) / wp (https:../../wiki/images/d/df/Jnt-2005.pdf), J. Number Theory 113(2):208-225, 2005, doi:10.1016/j.jnt.2004.09.002 (https://dx.doi.org/10.1016/j.jnt.2004.09.002).
[edit]
Refereed conference proceedings
- Zero-knowledge proofs for SIDH variants with masked degree or torsion (https://eprint.iacr.org/2024/056), with Y. Mokrani, SPACE 2023, pp. 48-65, doi:10.1007/978-3-031-51583-5_3 (https://doi.org/10.1007/978-3-031-51583-5_3).
- Generating supersingular elliptic curves over 𝔽ₚ with unknown endomorphism ring (https://eprint.iacr.org/2023/984), with Y. Mokrani, Indocrypt 2023, pp. 159-174, doi:10.1007/978-3-031-56232-7_8 (https://doi.org/10.1007/978-3-031-56232-7_8).
- Optimal generic attack against basic Boneh-Boyen signatures, with Y-K. Fu, and J. Chang, ISPEC 2022, pp. 505-519, doi:10.1007/978-3-031-21280-2_28 (https://doi.org/10.1007/978-3-031-21280-2_28).
- Towards post-quantum key-updatable public-key encryption via supersingular isogenies (https://eprint.iacr.org/2020/1593), with E. Eaton, C. Komlo, and Y. Mokrani, SAC 2021, pp. 461-482, doi:10.1007/978-3-030-99277-4_22 (https://doi.org/10.1007/978-3-030-99277-4_22).
- How not to create an isogeny-based PAKE (https://eprint.iacr.org/2020/361), with R. Azarderakhsh, D. Jao, B. Koziel, J. LeGrow, V. Soukharev, and O. Taraskin, ACNS 2020, pp. 169-186, doi:10.1007/978-3-030-57808-4_9 (https://doi.org/10.1007/978-3-030-57808-4_9).
- Improved digital signatures based on elliptic curve endomorphism rings, with X. Xu, C. Leonardi, A. Teh, K. Wang, W. Yu, and R. Azarderakhsh, ISPEC 2019, pp. 293-309, doi:10.1007/978-3-030-34339-2_16 (https://doi.org/10.1007/978-3-030-34339-2_16).
- Towards optimized and constant-time CSIDH on embedded devices (https://eprint.iacr.org/2019/297), with A. Jalali, R. Azarderakhsh, and M. Mozaffari-Kermani, COSADE 2019, pp. 215-231, doi:10.1007/978-3-030-16350-1_12 (https://doi.org/10.1007/978-3-030-16350-1_12).
- EdSIDH: Supersingular Isogeny Diffie-Hellman key exchange on Edwards curves (https:../../wiki/images/f/ff/Space-2018.pdf), with R. Azarderakhsh, E. Bakos Lang, and B. Koziel, SPACE 2018, pp. 125-141, doi:10.1007/978-3-030-05072-6_8 (https://doi.org/10.1007/978-3-030-05072-6_8).
- SoK: The problem landscape of SIDH (https://eprint.iacr.org/2018/336), with D. Urbanik, AsiaPKC 2018, pp. 53-60, doi:10.1145/3197507.3197516 (https://doi.org/10.1145/3197507.3197516).
- An exposure model for Supersingular Isogeny Diffie-Hellman key exchange (https:../../wiki/images/f/f0/Ctrsa-2018.pdf), with B. Koziel and R. Azarderakhsh, CT-RSA 2018, pp. 452-469, doi:10.1007/978-3-319-76953-0_24 (https://doi.org/10.1007/978-3-319-76953-0_24).
- Post-quantum static-static key agreement using multiple protocol instances (http://www.site.uottawa.ca/~cadams/papers/prepro/paper_31.pdf), with R. Azarderakhsh and C. Leonardi, SAC 2017, pp. 45-63, doi:10.1007/978-3-319-72565-9_3 (https://doi.org/10.1007/978-3-319-72565-9_3).
- Side-channel attacks on quantum-resistant Supersingular Isogeny Diffie-Hellman (http://www.site.uottawa.ca/~cadams/papers/prepro/paper_29.pdf), with B. Koziel and R. Azarderakhsh, SAC 2017, pp. 64-81, doi:10.1007/978-3-319-72565-9_4 (https://doi.org/10.1007/978-3-319-72565-9_4).
- Efficient compression of SIDH public keys (https://eprint.iacr.org/2016/963), with C. Costello, P. Longa, M. Naehrig, J. Renes, and D. Urbanik, Eurocrypt 2017, Part I, pp. 679-706, doi:10.1007/978-3-319-56620-7_24 (https://dx.doi.org/10.1007/978-3-319-56620-7_24). (source code (https://github.com/Microsoft/PQCrypto-SIDH))
- A post-quantum digital signature scheme based on supersingular isogenies (http://cacr.uwaterloo.ca/techreports/2017/cacr2017-02.pdf), with Y. Yoo, R. Azarderakhsh, A. Jalali, and V. Soukharev, FC 2017, pp. 163-181, doi:10.1007/978-3-319-70972-7_9 (https://dx.doi.org/10.1007/978-3-319-70972-7_9). (source code (https://github.com/yhyoo93/isogenysignature))
- On fast calculation of addition chains for isogeny-based cryptography (https://eprint.iacr.org/2016/1045), with B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, Inscrypt 2016, pp. 323-342, doi:10.1007/978-3-319-54705-3_20 (https://dx.doi.org/10.1007/978-3-319-54705-3_20).
- NEON-SIDH: Efficient implementation of supersingular isogeny Diffie-Hellman key exchange protocol on ARM (https://eprint.iacr.org/2016/669), with B. Koziel, R. Azarderakhsh, A. Jalali, and M. Mozaffari-Kermani, CANS 2016, pp. 88-103, doi:10.1007/978-3-319-48965-0_6 (https://dx.doi.org/10.1007/978-3-319-48965-0_6). (source code (https://github.com/kozielbrian/NEON-SIDH_ARMv7))
- Key compression for isogeny-based cryptosystems (https://eprint.iacr.org/2016/229), with R. Azarderakhsh, K. Kalach, B. Koziel, and C. Leonardi, AsiaPKC 2016, pp. 1-10, doi:10.1145/2898420.2898421 (https://dx.doi.org/10.1145/2898420.2898421).
- Post-quantum security models for authenticated encryption (http://cacr.uwaterloo.ca/techreports/2016/cacr2016-04.pdf), with V. Soukharev and S. Seshadri, PQCrypto 2016, pp. 64-78, doi:10.1007/978-3-319-29360-8_5 (https://dx.doi.org/10.1007/978-3-319-29360-8_5).
- A quantum algorithm for computing isogenies between supersingular elliptic curves (http://cacr.uwaterloo.ca/techreports/2014/cacr2014-24.pdf), with J. F. Biasse and A. Sankar, Indocrypt 2014, pp. 428-442, doi:10.1007/978-3-319-13039-2_25 (https://dx.doi.org/10.1007/978-3-319-13039-2_25).
- Isogeny-based quantum-resistant undeniable signatures (http://cacr.uwaterloo.ca/techreports/2014/cacr2014-15.pdf), with V. Soukharev, PQCrypto 2014, pp. 160-179, doi:10.1007/978-3-319-11659-4_10 (https://dx.doi.org/10.1007/978-3-319-11659-4_10). Note: The hardness assumptions in this paper have been completely broken, and the scheme itself partially broken, by 2019/950 (https://eprint.iacr.org/2019/950).
- Efficient implementation of bilinear pairings on ARM processors (https://eprint.iacr.org/2012/408), with G. Grewal, R. Azarderakhsh, P. Longa, and S. Hu, SAC 2012, pp. 149-165, doi:10.1007/978-3-642-35999-6_11 (https://dx.doi.org/10.1007/978-3-642-35999-6_11). Source code: projective (https:../../relicproj.tar.gz) pairings, affine (https:../../relicaffine.tar.gz) pairings, ARM assembly (https:../../gmp.tar.gz) code, and improved ARM assembly code (https:../../thesis-code.tar.bz2) from D. Fishbein's thesis (https://uwspace.uwaterloo.ca/bitstream/handle/10012/8400/Fishbein_Dieter.pdf).
- Publicly verifiable secret sharing for cloud-based key management (https:../../wiki/images/9/9c/Indocrypt11.pdf), with R. D'Souza, I. Mironov, and O. Pandey, Indocrypt 2011, pp. 290-309, doi:10.1007/978-3-642-25578-6_21 (https://dx.doi.org/10.1007/978-3-642-25578-6_21).
- Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies (http://cacr.uwaterloo.ca/techreports/2011/cacr2011-32.pdf), with L. De Feo, PQCrypto 2011, pp. 19-34, doi:10.1007/978-3-642-25405-5_2 (https://dx.doi.org/10.1007/978-3-642-25405-5_2).
- A subexponential algorithm for evaluating large degree isogenies (https://arxiv.org/abs/1002.4228), with V. Soukharev, ANTS IX, pp. 219-233, doi:10.1007/978-3-642-14518-6_19 (https://dx.doi.org/10.1007/978-3-642-14518-6_19).
- A study of two-party certificateless authenticated key-agreement protocols (https:../../wiki/images/1/1a/Indocrypt09.pdf), with C. Swanson, Indocrypt 2009, pp. 57-71, doi:10.1007/978-3-642-10628-6_4 (https://dx.doi.org/10.1007/978-3-642-10628-6_4).
- Boneh-Boyen signatures and the Strong Diffie-Hellman problem (https://eprint.iacr.org/2009/221), with K. Yoshida, Pairing 2009, pp. 1-16, doi:10.1007/978-3-642-03298-1_1 (https://dx.doi.org/10.1007/978-3-642-03298-1_1).
- Speeding up pairing computations on genus 2 hyperelliptic curves with efficiently computable automorphisms (https:../../wiki/images/1/1a/Pairing-2008.pdf), with X. Fan and G. Gong, Pairing 2008, pp. 243-264, doi:10.1007/978-3-540-85538-5_17 (https://dx.doi.org/10.1007/978-3-540-85538-5_17).
- Efficient pairing computation on genus 2 curves in projective coordinates (https:../../wiki/images/b/b5/Sac-2008.pdf), with X. Fan and G. Gong, SAC 2008, pp. 18-34, doi:10.1007/978-3-642-04159-4_2 (https://dx.doi.org/10.1007/978-3-642-04159-4_2).
- On the bits of elliptic curve Diffie-Hellman keys (https:../../wiki/images/8/82/Indocrypt-2007.pdf), with D. Jetchev and R. Venkatesan, Indocrypt 2007, pp. 33-47, doi:10.1007/978-3-540-77026-8_4 (https://dx.doi.org/10.1007/978-3-540-77026-8_4).
- Digit set randomization in elliptic curve cryptography (https:../../wiki/images/0/0a/Saga-2007.pdf), with S. R. Raju and R. Venkatesan, SAGA 2007, pp. 105-117, doi:10.1007/978-3-540-74871-7_10 (https://dx.doi.org/10.1007/978-3-540-74871-7_10).
- Do all elliptic curves of the same order have the same difficulty of discrete log? (https:../../wiki/images/9/91/Asiacrypt-2005.pdf), with S. D. Miller and R. Venkatesan, Asiacrypt 2005, pp. 21-40, doi:10.1007/11593447_2 (https://dx.doi.org/10.1007/11593447_2).
- Applications of secure electronic voting to automated privacy-preserving troubleshooting (https:../../wiki/images/2/2e/Ccs-2005.pdf), with Q. Huang and H. J. Wang, CCS 2005, pp. 68-80, doi:10.1145/1102120.1102132 (https://dx.doi.org/10.1145/1102120.1102132).
[edit]
Book chapters
- Elliptic curve cryptography (https:../../wiki/images/a/a1/Handbook.pdf), in Handbook of Information and Communication Security, pp. 35-57, doi:10.1007/978-3-642-04117-4_3 (https://dx.doi.org/10.1007/978-3-642-04117-4_3).
[edit]
Workshop proceedings
- Isogeny-based cryptography on mobile devices (https://docbox.etsi.org/Workshop/2013/201309_CRYPTO/e-proceedings_Crypto_2013.pdf), with D. Fishbein, Proceedings of the 1st ETSI workshop on quantum-safe cryptography (https://www.etsi.org/news-events/events/648-crypto-workshop2013), 2013. (source code (https:../../thesis-code.tar.bz2))
- Constructing elliptic curve isogenies in quantum subexponential time (https://qip2011.quantumlah.org/scientificprogramme/abstract/1012.4019.pdf), with A. Childs and V. Soukharev, 14th Workshop on Quantum Information Processing (https://qip2011.quantumlah.org/), 2011.
[edit]
Patents
- Systems and protocols for anonymous mobile payments with personal secure devices, with A. T. Vassilev and D. P. Jetchev, United States patent application no. 2013/0138571 (filed September 25, 2008).
- Privacy-preserving data aggregation using homomorphic encryption, with H. J. Wang and Q. Huang, United States patent 7856100 (issued December 21, 2010).
- Aggregating information from a cluster of peers, with H. J. Wang, N. Borisov, and Q. Huang, United States patent 7743123 (issued June 22, 2010).
- Randomized sparse formats for efficient and secure computation on elliptic curves, with R. Venkatesan, P. Montgomery, and S. R. Raju, United States patent 7664258 (issued February 16, 2010).
- Systems and methods for generation and validation of isogeny-based signatures, with P. Montgomery, R. Venkatesan, and V. Boyko, United States patent 7617397 (issued November 10, 2009); CIPO patent CA 2517807 (http://www.ic.gc.ca/opic-cipo/cpd/eng/patent/2517807/summary.html) (issued May 13, 2014).
- Determining cardinality of a parameter using hash values, with H. J. Wang, N. Borisov, and Q. Huang, United States patent 7584182 (issued September 1, 2009).
- Use of isogenies for design of cryptosystems, with R. Venkatesan, United States patent 7499544 (issued March 3, 2009); CIPO patent CA 2483486 (http://www.ic.gc.ca/opic-cipo/cpd/eng/patent/2483486/summary.html) (issued December 24, 2013).