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Abstract. Recent attacks on SIDH have led to increased scrutiny of
hardness assumptions for isogeny based cryptosystems, especially in the
case of SIDH variants which mask some of the information disclosed by
the original. One such piece of information which is potentially public
in SIDH variants is the endomorphism ring of the domain of the secret
isogeny. A possible way to mask this information is to use a random start-
ing elliptic curve instead of a fixed one. This approach raises the question
of whether doing so generates a new vulnerability, that is, whether the
hardness assumptions corresponding to these new SIDH variants are ran-
domly self-reducible.
In this paper, we study families of Ramanujan graphs whose adjacency
matrices commute. We use results on these families of commuting ma-
trices to prove the random self-reducibility of the hardness assumptions
underlying the FESTA scheme, as well as for some SIDH-based proof of
knowledge schemes.

1 Introduction

Isogeny based cryptography represents one of the possible candidate approaches
to constructing post-quantum cryptosystems. All isogeny-based schemes derive
their security from the hardness of the generic Supersingular Isogeny Problem
(SIP), which entails constructing an isogeny between two given supersingular
elliptic curves. To date, there is no known efficient quantum algorithm for solving
this problem.

However, in practice, although the security of all isogeny-based cryptosystems
is ultimately based on SIP, most such schemes actually require stronger assump-
tions, as one usually needs more information about a secret isogeny than just the
endpoint curves in order to interact with it cryptographically. The most famous
such scheme is SIDH [15], a key exchange scheme. In addition to providing the
domain and codomain of the secret isogeny, SIDH also publishes its degree, its
mapping on a fixed torsion subgroup and the endomorphism ring of the domain
elliptic curve. The scheme had been conjectured post-quantum secure and was
a Round 4 candidate in the NIST post-quantum standardization process until a
series of papers by Castryk-Decru [7], Maino et al. [18] and Robert [22] proposed
increasingly effective attacks on SIDH culminating in a classical break.



Since then, there have been multiple attempts at creating a secure SIDH
variant by masking some of the leaked information. All such proposed variants
mask the torsion point mapping information in order to be secure against known
SIDH attacks. In fact, many proposals only mask the mapping, and continue to
disclose the degree and domain endomorphism ring, for example M-SIDH [12],
BinSIDH [5] and FESTA [6]. Some schemes, such as MD-SIDH [12] and Ter-
SIDH [5], also mask the degree of the secret isogeny. Our focus here is on the
third piece of aforementioned information, namely, the endomorphism ring of
the starting curve for the isogeny. While such information is not necessary in
Robert’s version of the attack, it was needed in the original attack on SIDH by
Castryk and Decru. Moreover, other attacks on SIDH and its variants also rely on
the knowledge of the starting endomorphism ring, including Petit’s [20] lollipop
endomorphism attack, as well as Castryck and Vercauteren’s recent adaptation
of Petit’s attack to M-SIDH and FESTA [8]. Therefore, there is good reason to
avoid working with elliptic curves of known endomorphism ring if possible.

None of the cryptosystems mentioned above explicitly requires knowledge of
the endomorphism ring of the starting curve of the isogeny in order to operate.
However, there is no known straightforward way to select an elliptic curve of
unknown endomorphism ring while also avoiding any possibility of backdoor
knowledge of the endomorphism ring, although Basso et al. [3] have proposed a
multiparty protocol to produce such a curve.

In this paper, we ask the question of whether using a random supersingular
elliptic curve as opposed to a fixed one could introduce new vulnerabilities in
these cryptosystems that we have yet to discover. In order words, for the vari-
ous isogeny-based cryptosystems mentioned above, is the corresponding isogeny
hardness assumption randomly self-reducible? While such a result is easy to
prove for the generic Supersingular Isogeny Problem, the various concrete at-
tacks on SIDH, each with different requirements, clearly demonstrate the poten-
tial for this result to fail for the actual assumptions that we use in isogeny-based
schemes. To date, there are no known random self-reducibility results for the
specific isogeny hardness assumptions appearing in SIDH variants that do not
make use of orientations.

1.1 Contributions

The main mathematical result of this paper (Theorem 3.3) is a generalization
of Sardari’s theorem on the distance of vertices in a Ramanujan graph [24].
We generalize Sardari’s result to families of Ramanujan graphs whose adjacency
matrices commute, subject to some technical conditions on the graph degrees.
Applying these results to various families of Ramanujan graphs arising from
supersingular elliptic curves with level structure, we obtain sufficiency conditions
for the random self-reducibility of isogeny problems linked to SIDH variants.
Using eigenvalue results by Codogni and Lido [9], we apply these conditions
to prove that, for some isogeny schemes such as FESTA and decisional SIDH-
based zero-knowledge proofs [10,15,3], the problem of retrieving the secret key
is randomly self-reducible assuming that the degree of the secret isogeny is large



enough and that the field characteristic is congruent to 1 mod 12. We also show
that the congruence condition is unnecessary if the degree is a prime power.

In Section 2, we recall the background knowledge necessary for our theo-
rems. These theorems are presented in Section 3, and their application to known
isogeny problems is given in Section 4.

1.2 Related works

In the case of isogeny hardness problems involving orientations, such as CSIDH,
prior random self-reducibility results do exist. Kawashima et al. [17] prove the
random self-reducibilty of CISDH and propose an AKE scheme based on this
property. However, their result makes use of the fact that CSIDH has an ideal
class group structure, and these results do not carry over to SIDH variants.

The main mathematical result of this paper can be seen as generalization of
Sardari [24]. In that paper, Sardari uses the eigenvalues of a single Ramanujan
graph to compute a lower bound on the number of vertices that can be reached
with a random non-backtracking walk of fixed prime length starting from any
curve on the graph. This result can be applied to supersingular isogenies whose
degree is a fixed prime power, as the supersingular isogeny graph is a Ramanu-
jan graph. We generalize that theorem by working with families of Ramanujan
graphs in order to be able to represent isogenies whose degree is not a prime
power.

We make extensive use of recent work by Codogni and Lido [9] giving a full
description of which level structures on supersingular elliptic curves generate a
Ramanujan graph.

2 Background Knowledge

2.1 Elliptic Curves and Level Structures

In this paper, we are primarily interested with elliptic curves defined over Fp2 ,
for some prime p, and therefore limit our elliptic curves to be defined only over
these fields. When appropriate, we may also work in extensions of Fp2 .

Level structures, introduced by Arpin [2] and further studied by De Feo et
al. [11] and Codogni and Lido [9], provide a simple framework for categorizing
isogeny problems corresponding to various SIDH variants.

Definition 2.1 (Level Structure). Let E be a supersingular elliptic curve, let
N be a positive integer and let H be a subgroup of GL2(Z/NZ). For an ordered

basis (P,Q) of E[N ] and for

(
a b
c d

)
∈ H, we define the action of H on the set

of ordered bases of E[N ] to be(
a b
c d

)
(P,Q) := (aP + bQ, cP + dQ).

An H-level structure of E is an orbit of the above action.



Since we will often discuss the set of elliptic curves and level structure pairs,
the following notation will be used throughout this paper.

Definition 2.2. Let H be a subgroup of GL2(Z/NZ). We define EH to be the
set of pairs (E,C) where E is a supersingular elliptic curve over Fp2 and C is
an H-level structure in E.

If H = GL2(Z/NZ), there is a single orbit, which is the set of all ordered
bases of E[N ]. In this case we use the simplified notation E instead of EH .

2.2 Isogenies

Definition 2.3 (Isogeny). An isogeny between two elliptic curves is a rational
map between the curves which is also a group homomorphism.

Note that constant isogenies are valid isogenies under our definition.

Definition 2.4 (Isomorphic elliptic curves [25]). Let E1 and E2 be elliptic
curves. We say that E1 and E2 are isomorphic, and write E1

∼= E2, if there are
isogenies ϕ : E1 → E2 and ψ : E2 → E1 such that ψ◦ϕ and ϕ◦ψ are the identity
maps on E1 and E2, respectively. Such isogenies are called isomorphisms.

Similarly to elliptic curves, isogenies can also be isomorphic.

Definition 2.5 (Isomorphic isogenies). Let ϕ : E1 → E2 and ψ : F1 → F2

be isogenies. We say that ϕ and ψ are isomorphic if there exist elliptic curve
isomorphisms µ : E1 → F1 and ρ : E2 → F2 such that ρ ◦ ϕ = ψ ◦ µ.

We can extend the concept of level structure to isogenies by requiring the
map to preserve level structures.

Definition 2.6 (Isogeny with level structure). Let (E1, C1) and (E2, C2)
be two elliptic curve / H-level structure pairs, and let ϕ : E1 → E2 be an isogeny.
We say that ϕ : (E1, C1) → (E2, C2) if ϕ(C1) = C2.

An important fact about isogenies, is the following result:

Theorem 2.7 ([25]). A separable isogeny is uniquely defined up to isomorphism
by its kernel.

All isogenies in this paper are separable, and so Theorem 2.7 allows us to
represent isogenies by their kernel, as well as to define pushforward isogenies.

Definition 2.8 (Pushforward Isogeny [4,23]). Let E be a supersingular el-
liptic curve and let ϕ1, ϕ2 be isogenies on E of relatively prime degrees. We define
the pushforward isogeny [ϕ1]∗ϕ2 to be the isogeny with kernel ϕ1(ker(ϕ2)).

In this paper, we rarely use a pushforward isogeny by itself, but instead
compose it with the isogeny that was used to push it. As such, we define the
following operation.



Definition 2.9. We define ϕ2 ⊡ ϕ1 := ([ϕ1]∗ϕ2) ◦ ϕ1.

This operation as well as the following theorem form a key building block of
most isogeny based schemes.

Theorem 2.10. Up to isomorphism, ϕ2 ⊡ ϕ1 and ϕ1 ⊡ ϕ2 are equal.

Proof. Since the kernel of both isogenies is ker(ϕ1)+ker(ϕ2), Theorem 2.7 implies
that the isogenies are equal. ⊓⊔

2.3 Isogeny Graphs

Mestre [19] introduced the idea of using graph-theoretic properties of the graph
of supersingular elliptic curve isogenies to study arithmetic aspects of elliptic
curves and modular curves.

Definition 2.11. For a prime characteristic p and prime degree ℓ, the supersin-
gular ℓ-isogeny graph Gℓ is the (directed) graph whose vertices are the supersin-
gular elliptic curves over Fp2 , up to isomorphism, and whose edges are isogenies
of degree ℓ between such curves.

The number of supersingular elliptic curves in characteristic p up to isomor-
phism is well known.

Lemma 2.12 ([25]). The number of vertices of Gℓ is

|V (Gℓ)| =
⌊ p
12

⌋
+ ϵ

where

ϵ =


0 if p ≡ 1 mod 12,

1 if p ≡ 5 mod 12,

1 if p ≡ 7 mod 12,

2 if p ≡ 11 mod 12.

Definition 2.13 (Ramanujan Graph). A Ramanujan graph is a k-regular
connected graph, for some positive integer k, whose largest eigenvalue is k and
whose other eigenvalues have absolute value at most 2

√
k − 1.

An important property of supersingular isogeny graphs is that they are Ra-
manujan. The following well known result was proved by Pizer.

Theorem 2.14 ([21]). Gℓ is a (ℓ+ 1)-regular Ramanujan Graph.

While supersingular isogeny graphs always satisfy the Ramanujan eigenvalue
bound, whether or not the graphs must be viewed as directed graphs is a subtler
issue. For most isogenies, the dual isogeny goes in the reverse direction from the
original isogeny (i.e. from the original codomain to the original domain), mean-
ing that one can usually ignore the directed aspect of the edges by considering



isogenies together with their duals. However, this simplification breaks down
when one of the two endpoint curves has more automorphisms than the other,
since post-composition of an isomorphism to an isogeny always by definition pro-
duces an isomorphic isogeny, whereas pre-composition of an isomorphism does
not always produce an isomorphic isogeny because a pre-isomorphism can po-
tentially map the original kernel to a different subgroup. Therefore, in cases of
unequal numbers of automorphisms, it is possible for two isogenies to be isomor-
phic when their duals are not. For characterstics p > 3, such a situation can only
arise at j-invariants 0 and 1728, and these j-invariants are not supersingular if
p is 1 mod 12, yielding the following result.

Theorem 2.15 ([21]). If p ≡ 1 mod 12, then Gℓ is an undirected (ℓ+1)-regular
Ramanujan Graph.

For the isogeny graph Gℓ itself (without level structure), the condition p ≡
1 mod 12 is obligatory. In all other cases, the presence of extra automorphisms at
the supersingular j-invariants at 0 and 1728 introduces asymmetries in the adja-
cency matrix of the isogeny graph which prevents consideration of this graph as
an undirected graph. However, when we consider the isogeny graph GH,ℓ having
level structure (Definition 2.18), in some cases the aforementioned asymmetries
vanish because the extra automorphisms do not preserve the level structure and
therefore no longer result in asymmetries (cf. Remark 2.19).

The reason we care about supersingular isogeny graphs being Ramanujan is
that, in combination with the following theorem by De Feo, Jao and Plût, we can
link the randomness of walks on supersingular isogeny graphs to the randomness
of the final elliptic curve on said walks.

Theorem 2.16 ([16]). Let G be a finite k-regular graph for which the non-
trivial eigenvalues λ of the adjacency matrix are bounded by |λ| ≤ c, for some
c < k. Let S be any subset of the vertices of G, and v be any vertex of G. Then

a random walk of length at least
log

(
2|G|/

√
|S|

)
log(k/c) will end in S with probability

between |S|
2|G| and 3|S|

2|G| .

For the purposes of this paper, another important result is the following
theorem by Sardari.

Theorem 2.17 ([24]). Let G be a k-regular Ramanujan graph with n vertices
and fix a vertex x ∈ V (G). Let R be an integer such that R > (1 + ϵ) logk−1(n).
Define M(x,R) to be the set of all vertices y ∈ G such that there is no non-
backtracking walk from x to y with length R. Then

|M(x,R)| ≤ n1−ϵ(1 +R)2.

The concept of level structure can be combined with supersingular isogeny
graphs to obtain the following construction of isogeny graphs with level structure.



Definition 2.18. For a field Fpk , a subgroup H of GL2(Z/NZ), and an integer
ℓ ∤ N , the supersingular ℓ-isogeny graph with H-structure GH,ℓ is the graph whose
vertices are the pairs (E,C) of supersingular elliptic curves E over Fp2 up to
isomorphism and H-level structure C of E, and whose edges are the isogenies of
degree ℓ between said pairs, also up to isomorphism.

Remark 2.19. If p ≡ 1 mod 12, and ℓ belongs to H, the graph GH,ℓ is always
undirected [9, Prop. 2.2.2]. In other cases, the graph may still be undirected,
depending on the values of p,N, ℓ, and H. For example, when N is prime, the
curve with j = 1728 is supersingular if and only if p ≡ 3 mod 4, in which
case [2, Prop. 3.6] states that complex multiplication by i has no fixed points
among the set of order N subgroups precisely when N ≡ 3 mod 4. In such cases,
all vertices of the isogeny graph with level structure have the same number
of automorphisms. Similarly, the curve j = 0 is supersingular if and only if
p ≡ 2 mod 3, and complex multiplication by ζ3 has no fixed points among the
set of order N subgroups precisely when N ≡ 2 mod 3. We emphasize that
uniformity of the number of automorphisms, by itself, is not sufficient to conclude
that the adjacency matrix of the isogeny graph with level structure is symmetric.
As shown in [9, Prop. 2.2.2], we also need ℓ to belong to H in order to ensure
symmetry.

We need an upper bound on the size of this graph. A simple one to obtain is
the following.

Lemma 2.20.

|EH | <
( p
12

+ 2
) |GL2(Z/NZ)|

|H|

Proof. From Lemma 2.12, we have that the number of supersingular curves, up
to isomorphism, is less then p

12 +2. Since we are looking for an upper bound, we
can ignore the possible isomorphism between two level structures of the same
curve.

Let E be a supersingular elliptic curve, and let B be the set of ordered bases
of E[N ]. The number of level structures on E is the number of orbits of the
group action of H on B. Since E[N ] ∼= (Z/NZ)2, |B| = |GL2(Z/NZ)|.

Since, for any ordered basis, the only matrix stabilizing it is the identity, we
have that, by the orbit-stabilizer theorem, each orbit has size H. We can then
combine Burnside’s lemma with Lagrange’s theorem to get that the number of

orbits is |B|
|H| , leading to the desired inequality. ⊓⊔

The exact size of GL2(Z/NZ) can be computed using the following theorem.

Theorem 2.21 ([13]). Let N =
∏t

k=1 ρ
αk

k . Then

|GL2(Z/NZ)| =
t∏

k=1

ρ
4(αk−1)
k (ρ2k − 1)(ρ2k − ρk).



A recent paper, by Codogni and Lido, provides a generalization of Pizer’s
result to the case of added level structure.

Theorem 2.22 ([9]). If every invertible multiple of the identity as well as a
matrix of every determinant are in H, then GH,ℓ is an (ℓ+1)-Ramanujan graph
and its adjacency matrix is diagonalizable.

Of course, the above conditions do not apply to every level structure, as we
discuss in more detail in Section 4, but they do apply to some currently used
primitives such as FESTA and the zero-knowledge proofs found in [10,15,3].

For a fixed value of p and H, the number of supersingular elliptic curves with
H-level structure up to isomorphism is also fixed. As such, the dimensions of the
adjacency matrix of Gℓ are the same for every value of ℓ. In fact, we also have
that these matrices commute.

Lemma 2.23. Let ℓ1 and ℓ2 be distinct primes and let A1 and A2 be the adja-
cency matrices of GH,ℓ1 and GH,ℓ2 respectively. We have that A1A2 = A2A1.

Proof. For two elliptic curves E and F , A1(E,F ) is the number of ℓ1 isogenies
from E to F . Similarly, A2A1(E,F ) is the number of isogenies from E to F that
can be constructed as ϕ2 ⊡ ϕ1 where ϕ2 is an isogeny of degree ℓ2 and ϕ1 is
an isogeny of degree ℓ1. By Theorem 2.10, each such isogeny can be written as
ϕ1⊡ϕ2. Therefore,A1A2(E,F ) ≥ A2A1(E,F ). Since this argument is symmetric,
we can conclude that A1A2(E,F ) = A2A1(E,F ). As this holds for any pair of
elliptic curves, we have that A1A2 = A2A1. ⊓⊔

An important issue in this paper is the question of whether there exists an
isogeny of fixed degree between two supersingular curves with level structure.
As such, we use the following notation.

Definition 2.24. Let (E,C) ∈ EH . We define ΞE,H,C,d as

ΞE,H,C,d = {(F,D) ∈ EH | ∃ ϕ : E → F, ϕ(C) = D and deg(ϕ) = d}.

2.4 Linear Algebra

For the main result of this paper, we will require the following standard theorem
from linear algebra.

Theorem 2.25 ([14, Thm. 1.3.21]). If a family of diagonalizable matrices
commutes, then there is an eigenvector basis that diagonalizes all of them at the
same time (with possibly different eigenvalues).

As our main result is somewhat a generalization of Sardari’s result [24], we
will also need to make use of Chebyshev polynomials of the second kind, which
can be used to represent non-backtracking walks of regular graphs.



Definition 2.26 (Chebyshev polynomials of the second kind). The fam-
ily {Un(x)}n∈N of Chebyshev polynomials of the second kind is defined by the
following recurrence relation:

U0(x) = 1,

U1(x) = 2x,

Un+1(x) = 2xUn(x)− Un−1(x).

An important property of Chebyshev polynomials of the second kind is the
following bound.

Theorem 2.27 ([1]). For −1 ≤ x ≤ 1, we have that −(n+1) ≤ Un(x) ≤ (n+1).

From elementary linear algebra, we also require the following standard results
on diagonalizable matrices.

Theorem 2.28. If A is a real symmetric matrix, then it is diagonalizable and
its eigenvectors are orthonormal.

Theorem 2.29. If A is diagonalizable with eigenvalues λ1, . . . , λn with associ-
ated eigenvectors ϕ1, . . . , ϕn, then

A =

n∑
i=1

λiϕ
t
iϕi.

In addition, if p is a polynomial, then,

p(A) =

n∑
i=1

p(λi)ϕ
t
iϕi.

2.5 Computational Problems

Definition 2.30. We say that a problem is randomly self-reducible if every al-
gorithm solving it for a non-negligible fraction of cases can be modified with a
polynomial loss in efficiency to solve every case.

When studying the possible random self-reducibility of problem associated
with isogeny problems, we focus in this paper on the problems linked with the
retrieval of the secret key, which is the secret isogeny. The most generic problem
is of course SIP.

Problem 2.31 (Supersingular Isogeny Problem). Given two supersingular elliptic
curves E and F over Fp2 , compute an isogeny ϕ : E → F .

Note that every supersingular elliptic curve over Fp2 is isomorphic (possibly
over an extension field) to a supersingular elliptic curve with exactly (p + 1)2

points. Additionally, Tate’s isogeny theorem states that two curves over a finite
field with the same number of points are isogenous. As such, by choosing such



curves as representatives of each isomorphism class, we can guarantee the exis-
tence of an isogeny between any two supersingular elliptic curves. As mentioned
in the introduction, in most SIDH variants, the degree of the secret isogeny is
known. Even in the cases where it is hidden, such as in MD-SIDH, a multiple of
the degree is known, which leads us to the following problem.

Problem 2.32. Let d be a positive integer and let E and F be supersingular
elliptic curves over Fp2 . Given a guarantee that there exists a d-isogeny ψ : E →
F , compute an isogeny ϕ : E → F .

Note that finding an isogeny of degree other than d constitutes a valid solution
to this problem. The reason we choose to work on this problem, rather than one
where the degree of the outputted isogeny is specified is that, in practice, finding
such an isogeny is enough to break most isogeny based encryption schemes.

Of course, the most substantial information that is typically made available,
be it in the original SIDH, its new variants like M-SIDH, or even more distinct
schemes like FESTA, is the mapping of the isogeny on a chosen level structure.
Hence, the most important problem we want to be randomly self-reducible is
the following.

Problem 2.33 (Known Level Structure Supersingular Isogeny Problem). Let d
and N be relatively prime positive integers, and let H < GL2(Z/NZ). Let
(E,C) and (F,D) be supersingular elliptic curves-H-level structure pairs over
Fp2 . Given a guarantee that there is a d-isogeny ψ : (E,C) → (F,D), compute
an isogeny ϕ : E → F such that ϕ(C) = D.

Problem 2.32 can be seen as a special case of Problem 2.33 where H =
GL2(Z/NZ). As such, our results focus on Problem 2.33 and we discuss how
they apply to Problem 2.32 in Section 4.

3 Main Result

In this section, we will prove that some isogeny based problems are randomly self-
reducible. As mentioned previously, the generic Supersingular Isogeny Problem
is easily proven to be random self-reducible, as follows.

Theorem 3.1. Problem 2.31 is randomly self-reducible.

Proof. Let ℓ be any small prime number (e.g., 2) and consider E and F as
vertices on the graph Gℓ. Let A be an algorithm solving Problem 2.31 for a
non-negligible fraction ϵ of pairs (E,F ). Let TE be the set of values of F such
that A solves Problem 2.31 for (E,F ). Let T ′ be the set of values of E for which
the size of TE is a non-negligible fraction of |E|, and let ε be the smallest such
fraction. Since the number of pairs (E,F ) for which A solves Problem 2.31 is

equal to
∑

E∈E |TE |, we have that
|T ′|
|E| is a non-negligible fraction δ. Consider

the following algorithm, denoted REDU1.



1: function REDU1(ℓ,p, E, F )

2: Evaluate λ = log(2|E|)
log((ℓ+1)/(2

√
ℓ))

3: Let ϕ1 : E → E′ be a ℓλ-isogeny generated by a random walk on the ℓ-isogeny
graph from E

4: Let ϕ2 : F → F ′ be a ℓλ-isogeny generated by a random walk on the ℓ-isogeny
graph from F

5: Use A to evaluate an isogeny ψ : E′ → F ′

6: return ϕ̂2ψϕ1

7: end function

Since ℓ is small and λ is polynomial, the evaluation of isogenies and duals
can be done in polynomial time. Let α be the probability of success of A on the
pairs that it can solve. By Theorem 2.16, the probability that we have E′ ∈ T ′ is
at least δ

2 , and the probability that F ′ ∈ TE is at least ε
2 . Hence, the probability

of success of REDU1 is at least αδε
4 , which is non-negligible. ⊓⊔

Since Problem 2.33 can be seen as a generalization of Problem 2.32, we only
need to find sufficient conditions for the former to be randomly self-reducible
and then show that the latter respects these conditions.

Theorem 3.2. If
|ΞE,H,C,d|

|EH | is non-negligible for all (E,C) ∈ EH , then Problem

2.33 is randomly self-reducible.

Proof. Let ℓ be a small prime number not dividing N .
Let B be an algorithm that can solve Problem 2.33 for a non-negligible frac-

tion of pairs ((E,C), (F,D)) with (F,D) ∈ ΞE,H,C,d.
For any given pair ((E,C), (F,D)) and any secret d-isogeny ψ : (E,C) →

(F,D), we can use the following reduction algorithm:

1: function REDU2(ℓ,p, (E,C), (F,D))

2: Evaluate λ = log(2|EH |)
log((ℓ+1)/(2

√
ℓ))

3: Let ϕ1 : (E,C) → (E′, C′) be a ℓλ-isogeny generated by a random walk on the
ℓ-isogeny graph from (E,C)

4: Let ϕ2 : (F,D) → (F ′, D′) be a ℓλ-isogeny generated by a random walk on the
ℓ-isogeny graph from (F,D)

5: Use B to evaluate an isogeny ψ′ : (E′, C′) → (F ′, D′)
6: return ϕ̂2ψ

′ϕ1

7: end function

We only need to check that the probability of success in non-negligible.
Let T(E,C) be the set of values of (F,D) such that B solves Problem 2.33 for
((E,C), (F,D)). Let T ′ be the set of values of (E,C) for which the size of T(E,C)



is a non-negligible fraction of |ΞE,C,H,d| and let ε be the smallest such frac-
tion. Since the number of pairs ((E,C), (F,D)) for which B solves Problem 2.33

is equal to
∑

(E,C)∈EH

∣∣T(E,C)

∣∣, we have that
|T ′|

|ΞE,C,H,d| is a non-negligible frac-

tion. Because
|ΞE,C,H,d|

|EH | is also non-negligible,
|T ′|
|EH | is a non-negligible fraction δ.

Since
|ΞE,C,H,d|

|EH | is non-negligible for all (E,C) ∈ EH , it follows that (F ′, D′) has

a non-negligible probability to be in ΞE′,C′,H,d. Hence, B has a non-negligible
probability to succeed. ⊓⊔

In order to use the above theorem, we require a way to compute a lower

bound for
|ΞE,H,C,d|

|EH | . To do that, we generalize a theorem by Sardari [24].

Theorem 3.3. Let G1, . . . , Gk be a family of Ramanujan graphs with same com-
mon vertex set V , of size n, such that the following properties hold:

1. Gi is a (ℓi + 1)-regular graph with a diagonalizable adjacency matrix, for
some positive integer ℓi. (While not necessary for this theorem, ℓi is prime
for our applications.)

2. Gi is undirected, so that its adjacency matrix is symmetric.

3. gcd(ℓi, ℓj) = 1 for i ̸= j.

4. The adjacency matrices Ai and Aj of each pair of graphs Gi and Gj com-
mute.

Let e = (e1, . . . , ek) be a vector of non-negative integers. Let x ∈ V and let Ξe(x)
be the set of vertices we can arrive at using the following algorithm.

1. Let x0 = x.

2. For 1 ≤ i ≤ k, take a random non-backtracking walk in Gi of length ei
starting at xi−1 and let the final point be xi.

3. Return xk.

Then

|Ξe(x)| ≥ n

(
1− n∏k

i=1 ℓ
ei
i

k∏
i=1

(ei + 1)2

)
.

Remark 3.4. When p ≡ 1 mod 12, Gi is taken to be the supersingular isogeny
graph Gℓi over Fp2 . Properties 1 and 2 come from Theorem 2.15, Property 3 is due
to the fact that distinct supersingular isogeny graph use distinct prime values
of ℓ and Property 4 comes from Lemma 2.23. As mentioned in Remark 2.19,
when N is prime and the level structure is non-trivial (H ̸= GL2(Z/NZ)), we
have more cases where the isogeny graph is undirected and where this theorem
applies. Namely, if p ≡ 7 mod 12 and ℓ belongs to H, Theorem 3.3 still applies if
N ≡ 3 mod 4. Similarly, if p ≡ 5 mod 12 and ℓ belongs to H, then our theorem
applies when N ≡ 2 mod 3, and if p ≡ 11 mod 12 then it applies when N ≡
11 mod 12.



Proof. Since the adjacency matrices commute and are diagonalizable, Theorem
2.25 implies that there is a common basis of eigenvectors. Denote these (nor-
malized) eigenvectors by ϕj , where ϕ1 is the constant eigenvector (which exists
since we are dealing with regular graphs).

Let λi,j be the eigenvalue associated with ϕj for Ai. Since the Gi are Ra-
manujan graphs, we have that λi,1 = ℓi + 1 and λi,j ≤ 2

√
ℓi for j ≥ 2. Let

Si(R) =


I if R = 0,

Ai if R = 1,

AiSi(R− 1)− ℓiSi(R− 2) otherwise.

Here, Si(R) is the adjacency matrix of the graph whose edges are the walks of
length R on Gi with no backtracking. From the above recurrence, we have

Si(R) = (ℓi)
R
2 UR

(
Ai

2
√
ℓi

)
where UR is the Chebyshev of polynomial of the second kind defined in Definition
2.26. Observe that, since Ai is diagonalizable, we can write it as

n∑
j=1

λi,jϕ
t
jϕj .

Since for any fixed R, Si(R) is a polynomial in Ai, we can use Theorem 2.29 to
obtain

Si(R) =

n∑
j=1

(ℓi)
R
2 UR

(
λi,j

2
√
ℓi

)
ϕtjϕj .

With multiplicity, the set of non-backtracking e-walks is represented by

k∏
i=1

Si(ei) =

k∏
i=1

n∑
j=1

(ℓi)
ei
2 Uei

(
λi,j

2
√
ℓi

)
ϕtjϕj

=
∑

1≤j1,...,jk≤n

k∏
i=1

(
(ℓi)

ei
2 Uei

(
λi,ji
2
√
ℓi

)
ϕtjiϕji

)

=
∑

1≤j1,...,jk≤n

k∏
i=1

(
(ℓi)

ei
2 Uei

(
λi,ji
2
√
ℓi

)) k∏
i=1

(
ϕtjiϕji

)
.

Since the set of ϕj consists of eigenvectors of real symmetric matrices, said

vectors are orthonormal. Hence,
∏k

i=1

(
ϕtjiϕji

)
is equal to 1 if all ji’s are equal

and 0 otherwise, so

k∏
i=1

Si(ei) =

n∑
j=1

ϕtjϕj

k∏
i=1

(ℓi)
ei
2 Uei

(
λi,j

2
√
ℓi

)
.



For any two vertices x and y of V ,

k∏
i=1

Si(ei)(x, y) =

n∑
j=1

ϕj(x)ϕj(y)

k∏
i=1

(ℓi)
ei
2 Uei

(
λi,j

2
√
ℓi

)
is equal to the number of e-walks from x to y. Let x be a fixed vertex of V , and
let y be a uniformly distributed random vertex of G. Since the total number of
e-walks is constant regardless of the choice of x (because the graphs are regular),
we have that

Ey[

k∏
i=1

Si(ei)(x, y)] =

∏k
i=1

(
ℓei−1
i (ℓi + 1)

)
n

.

We also want to evaluate

Vary

[
k∏

i=1

Si(ei)(x, y)

]
= Vary

 n∑
j=1

ϕj(x)ϕj(y)
k∏

i=1

(ℓi)
ei
2 Uei

(
λi,j

2
√
ℓi

) .
Note ϕ1 is the constant eigenvector, which implies that

ϕ1(x)ϕ1(y)

k∏
i=1

(ℓi)
ei
2 Uei

(
λi,1

2
√
ℓi

)
does not depend on y and can be ignored when evaluating the variance.

Vary

[
k∏

i=1

Si(ei)(x, y)

]
= Vary

 n∑
j=2

ϕj(x)ϕj(y)

k∏
i=1

(ℓi)
ei
2 Uei

(
λi,j

2
√
ℓi

)
= Ey


 n∑

j=2

ϕj(x)ϕj(y)

k∏
i=1

(ℓi)
ei
2 Uei

(
λi,j

2
√
ℓi

)2


− Ey

 n∑
j=2

ϕj(x)ϕj(y)

k∏
i=1

(ℓi)
ei
2 Uei

(
λi,j

2
√
ℓi

)2

≤ Ey


 n∑

j=2

ϕj(x)ϕj(y)

k∏
i=1

(ℓi)
ei
2 Uei

(
λi,j

2
√
ℓi

)2


=
1

n

∑
y∈Γ

 n∑
j=2

ϕj(x)ϕj(y)

k∏
i=1

(ℓi)
ei
2 Uei

(
λi,j

2
√
ℓi

)2

=
1

n

∑
y∈Γ

n∑
j1=2

n∑
j2=2

ϕj1(x)ϕj2(x)ϕj1(y)ϕj2(y)(
k∏

i=1

(ℓi)
ei
2 Uei

(
λi,j1
2
√
ℓi

))( k∏
i=1

(ℓi)
ei
2 Uei

(
λi,j2
2
√
ℓi

))
.



Since the ϕj ’s are orthonormal, we have that

Vary

[
k∏

i=1

Si(ei)(x, y)

]
≤ 1

n

n∑
j1=2

n∑
j2=2

ϕj1(x)ϕj2(x)

(
k∏

i=1

(ℓi)
ei
2 Uei

(
λi,j1
2
√
ℓi

))
(

k∏
i=1

(ℓi)
ei
2 Uei

(
λi,j2
2
√
ℓi

))∑
y∈Γ

ϕj1(y)ϕj2(y)

=
1

n

n∑
j1=2

n∑
j2=2

ϕj1(x)ϕj2(x)

(
k∏

i=1

(ℓi)
ei
2 Uei

(
λi,j1
2
√
ℓi

))
(

k∏
i=1

(ℓi)
ei
2 Uei

(
λi,j2
2
√
ℓi

))
⟨ϕj1 , ϕj2⟩

=
1

n

n∑
j=2

ϕj(x)
2

(
k∏

i=1

(ℓi)
eiUei

(
λi,j

2
√
ℓi

)2
)
.

When j ≥ 2, we have λi,j ≤ 2
√
ℓi since Gi is Ramanujan. Hence −1 ≤ λi,j

2
√
ℓi

≤ 1.

Theorem 2.27 therefore implies that

−(ei + 1) ≤ Uei

(
λi,j

2
√
ℓi

)
≤ ei + 1.

Hence

Vary

[
k∏

i=1

Si(ei)(x, y)

]
≤ 1

n

n∑
j=2

ϕj(x)
2

(
k∏

i=1

(ℓi)
eiUei

(
λi,j

2
√
ℓi

)2
)

=

∏k
i=1(ℓi)

ei

n

n∑
j=2

ϕj(x)
2

k∏
i=1

Uei

(
λi,j

2
√
ℓi

)2

≤
∏k

i=1(ℓi)
ei(ei + 1)2

n

n∑
j=2

ϕj(x)
2

<

∏k
i=1(ℓi)

ei(ei + 1)2

n
.



since
∑n

j=2 ϕj(x)
2 < 1 as the ϕj ’s form an orthonormal basis missing one vector.

We now use Chebyshev’s inequality:

Pr

[
k∏

i=1

Si(ei)(x, y) = 0

]

≤ Pr

[∣∣∣∣∣
k∏

i=1

Si(ei)(x, y)− Ey[

k∏
i=1

Si(ei)(x, y)]

∣∣∣∣∣ ≥ Ey[

k∏
i=1

Si(ei)(x, y)]

]

≤
Vary

[∏k
i=1 Si(ei)(x, y)

]
Ey[
∏k

i=1 Si(ei)(x, y)]2

< n

∏k
i=1(ℓi)

ei(ei + 1)2∏k
i=1

(
ℓei−1
i (ℓi + 1)

)2
< n

∏k
i=1(ei + 1)2∏k

i=1 ℓ
ei
i

.

Therefore∣∣∣∣∣{y ∈ Γ :

k∏
i=1

Si(ei)(x, y) = 0}

∣∣∣∣∣ < n2
∏k

i=1(ei + 1)2∏k
i=1 ℓ

ei
i

=
n2

d

k∏
i=1

(ei + 1)2,

so that

|Ξe(x)| =

∣∣∣∣∣{y ∈ Γ :

k∏
i=1

Si(ei)(x, y) > 0}

∣∣∣∣∣
= n−

∣∣∣∣∣{y ∈ Γ :

k∏
i=1

Si(ei)(x, y) = 0}

∣∣∣∣∣
≥ n− n2

d

k∏
i=1

(ei + 1)2

≥ n(1− n∏k
i=1 ℓ

ei
i

k∏
i=1

(ei + 1)2).

which is the desired inequality. ⊓⊔

Combining Theorem 3.2 and Theorem 3.3, we obtain:

Corollary 3.5. Let d =
∏k

i=1 ℓ
ei
i be the factorization of the degree of the secret

isogeny in Problem 2.33. If p ≡ 1 mod 12, and

d

|EH |
∏k

i=1(ei + 1)2



is non-negligible, and H contains every scalar matrix in GL2(Z/NZ), and the
set det(H) is all of (Z/NZ)×, then Problem 2.33 in randomly self-reducible.

Remark 3.6. This result still applies when p ̸≡ 1 mod 12, if N is prime and the
conditions discussed in Remark 3.4 are respected.

Proof. Let c be the smallest positive integer such that

1− n

ℓe1+c
1

∏k
i=2 ℓ

ei
i

(e1 + c)

k∏
i=2

(ei + 1)2 = 1−

(
d

|EH |
∏k

i=1(ei + 1)2

)−1
(e1 + c)

e1ℓc1

is positive and non-negligible. By hypothesis,
(

d
|EH |

∏k
i=1(ei+1)2

)−1

can be upper

bounded by a polynomial in terms of the input size. Therefore, a value of ℓc1
respecting the desired conditions exists and is also of polynomial size. As a
direct result of Theorems 3.2 and 3.3, we have that Problem 2.33 is randomly
self-reducible when the degree of the secret isogeny is ℓc1d.

We remark that Problem 2.33 for a secret isogeny of degree d is polynomially
equivalent to the same problem for a secret isogeny of degree ℓc1d. This is because,
in the latter case, we can write the secret isogeny as ϕ1ϕ2 where ϕ1 has degree d
and ϕ2 has degree ℓc1. Since ℓ

c
1 is polynomial, we can simply guess ϕ2 and reduce

the problem to an instance where the secret isogeny has degree d.
Hence, Problem 2.33 is also randomly self-reducible for the cases where the

secret isogeny is of degree d. ⊓⊔

If p ̸≡ 1 mod 12, we can still prove random self-reducibility when the secret
degree is a prime power (i.e. k = 1), by running through the proof of Corollary 3.5
and applying Theorem 2.17 instead of Theorem 3.3.

Corollary 3.7. In the case where d is a prime power, let d = ℓe11 be the factor-
ization of the degree of the secret isogeny in Problem 2.33. If

ℓe11
|EH |(e1 + 1)2

is non-negligible, and H contains every scalar matrix in GL2(Z/NZ), and the
set det(H) is all of (Z/NZ)×, then Problem 2.33 in randomly self-reducible.

4 Applications to Isogeny Problems

Using the results of the previous section, we can now explore which choices of H
make Problem 2.33 potentially randomly-self reducible. In such cases, we give
an upper bound for the required secret isogeny degree.

When studying these cases, we assume that N is smooth and that one of the
following cases applies:

1. p ≡ 1 mod 12,



2. the secret isogeny degree is a prime power,
3. N is prime and one of the following subconditions applies:

(a) p ≡ 5 mod 12 and N ≡ 2 mod 3,
(b) p ≡ 7 mod 12 and N ≡ 3 mod 4,
(c) p ≡ 11 mod 12 and N ≡ 11 mod 12.

Not that the third case asks for N to be both smooth and prime at the same
time. This forces N to be small, which limits the applications of this case.

4.1 H = GL2(Z/NZ)

As mentioned in Subsection 2.5, this case is equivalent to Problem 2.32. In the
generic level structure case, the necessary conditions for Corollary 3.5 hold and
|EH | = |E| ∼ p

12 . Problem 2.33 is therefore randomly self-reducible as long as

12d

p
∏k

i=1(ei + 1)2

is non-negligible.

4.2 H =

{(
1 0
0 1

)}
When N2 > d, the full level structure case can be attacked in polynomial time, as
shown by the SIDH attacks [7,18,22], making it trivially randomly self-reducible.
This inequality holds for most key exchanges based on SIDH since the values
of N and d for one party are the flipped for the other, making the attack work
against at least one party.

If one was to somehow use parameters such that the attacks do not hold,
our results would not apply in this case since H does not contain every scalar
matrix. According to Codogni and Lido [9], the isogeny graph in this case is
connected if and only if ℓ generates (Z/NZ)×, and walks on the graph will not
reach every vertex when the graph is not connected. When the isogeny graph is
not connected, we cannot apply Theorem 3.3 since the graph is not Ramanujan.
Imagine a degenerate algorithm that could perfectly solve the problem on half
the connected components but would always fail on the others. A random walk
could not be used to reduce a solution on a successful component to a solution
of a failure component. It is worth noting that the graph components are known
to be isomorphic [9, Cor. 2.3.7]. If the isomorphism is efficiently computable,
then one could use the isomorphism to obtain an equivalence of problems across
components. However, if an isomorphism is not efficiently computable, then a
reduction is not guaranteed. Of course, this does not necessarily mean that the
problem is not randomly self reducible, only that if it was, the reduction would
require different techniques.

Even in the cases where the isogeny graph is connected, our results would
not apply as is, because, according to [9], the isogeny graph contains non-real



eigenvalues. This does not respect Condition 2 of Theorem 3.3 since non-real
eigenvalues would imply that the adjacency matrix is not symmetric. The proof
of Theorem 3.3 relies on the fact that every eigenvalue is real, in order to use a
known upper bound on Chebyshev polynomials of the second kind. It might be
possible to generalize our results to apply here by first proving an upper bound
for Chebyshev polynomials in the complex disk of radius 1.

4.3 H =

{(
1 ∗
0 1

)}
As shown by De Feo, Fouotsa and Panny [11], the single torsion point level
structure case can be reduced to SIDH, making it also solvable in polynomial
time when N is square and N > d. In these cases, the problem is trivially
randomly self-reducible.

Similarly to the SIDH case, if the parameters are chosen so that no polyno-
mial attack is known, our results do not apply since H does not contain every

scalar matrix. According to Codogni and Lido [9], when H =

{(
1 ∗
0 1

)}
, the

isogeny graph is connected if and only if ℓ generates (Z/NZ)×, but the eigen-
values are not all real. This leads to the same issues as the previous case, with
similar avenues for further research.

4.4 H =

{(
λ 0
0 λ

)}
Unfortunately, the results in this paper do not apply to M-SIDH (and MD-SIDH)
since H does not contain matrices of non-square determinant. By [9, Thm. 1.6],
if ℓ is a square in (Z/NZ)×, then the isogeny graph is not connected and we
run into the same issues as in the previous subsections. On the other hand,
if ℓ is relatively prime to N and not a square in (Z/NZ)×, then the isogeny
graph is connected and all of its eigenvalues are real. However, for these values
of ℓ, the isogeny graphs have both (ℓ + 1) and −(ℓ + 1) as eigenvalues. This
does not respect the necessary conditions for Theorem 3.3 to apply since the
isogeny graph is not Ramanujan when it has this extra trivial eigenvalue. For
the proof of Theorem 3.3 to work, we require every eigenvalue, except for the
trivial eigenvalue (ℓ+ 1) having multiplicity one, to be at most 2

√
ℓ in absolute

value. This is because, when computing the variance in the proof of Theorem 3.3,
the largest eigenvalue can be ignored as its eigenvector is the constant eigenvector
and therefore has no influence on said variance. This trick does not work with
any other eigenvalue and we then have to use upper bounds on Chebyshev’s
polynomials of the second kind. For the eigenvalue −(ℓ+ 1), we currently have
no usable upper bound, and this causes us similar issues as when the eigenvalues
are non-real. While this argument does not prove that the problem is not random
self-reducible, it does provide intuition for why M-SIDH might not be randomly
self-reducible. For further research, one could find a good upper bound to the
Chebyshev polynomial when the eigenvalue is large. Alternatively, one could use



the properties of the eigenvector associated to −(ℓ + 1) in order to find a trick
similar to the one we use to eliminate (ℓ+ 1).

4.5 H =

{(
∗ ∗
0 ∗

)}
As mentioned in [11], this case is the Borel level structure case. We work with
all upper (or lower) triangular matrices. This level structure mainly applies to
protocols for zero-knowledge proofs using SIDH squares, for example [10,15,3].
Here H contains every scalar matrix, and there is a matrix for every possible
determinant. Therefore, our results apply.

We have that |H| = Nφ(N)2. Let N =
∏t

k=1 ρ
αk

k and d =
∏k

i=1 ℓ
ei
i . Applying

our results, we find that Problem 2.33 is randomly self-reducible as long as

12dNφ(N)2

p
(∏t

k=1 ρ
4(αk−1)
k (ρ2k − 1)(ρ2k − ρk)

)∏k
i=1(ei + 1)2

is not negligible.
To get an idea of the size of the above fraction for current scheme, take for

example the zero-knowledge proof found in the paper by Basso et al. [3]. One of
the parameter sets used in the paper is the one from SIKE434. In this case, we
have that p = 2216 × 3137 − 1, N = 2216 and d = 3137. The formula becomes:

12× 2216 × 313722×216−2

(2216 × 3137 − 1)
(
24(216−1)(22 − 1)(22 − 2)

)
(137 + 1)2

≈ 3.79× 10−134.

Sadly, this is much too small to be useful. However, the zero-knowledge proof
in [3] could be modified so that the d-isogeny is longer. For an example of pa-
rameter set for which the formula is useful, let p = 2a3b−1, d = 33b and N = 2a.
The formula becomes:

12× 33b23a−2

(2a3b − 1)
(
24(a−1)(22 − 1)(22 − 2)

)
(b+ 1)2

≈ 32b

22a

If 2a ≈ 3b, then the problem is randomly self-reducible. Using the same prime
as before, a valid parameter set would be p = 2216 × 3137 − 1, N = 2216 and
d = 3411. In this case, the formula is equal to approximately 2.29×10−4. As this
is clearly non-negligible, this parameter set leads us to a randomly self-reducible
problem. Of course this is a lower bound on the probability of success of the
reduction algorithm and not on the length of the algorithm itself. As such, it is
possible for the reduction to be more efficient in practice, in which case we could
use smaller parameters. Still, with the above choice of parameters, we would
need to compute isogeny chains of three times the length as those used in SIDH.
While there is a required loss of efficient if one desired using our results in order
to obtain random self-reducibility, it is only by a small factor.



4.6 H =

{(
∗ 0
0 ∗

)}
As mentioned in [11], this case is the split Cartan level structure case. Here H
contains every scalar matrix, and there is a matrix for every possible determi-
nant. This level structure applies to FESTA [6]. Therefore, we can apply our
results.

We have that |H| = φ(N)2. Let N =
∏t

k=1 ρ
αk

k and d =
∏k

i=1 ℓ
ei
i . Applying

our results, we have that Problem 2.33 is randomly self-reducible as long as

12dφ(N)2

p
(∏t

k=1 ρ
4(αk−1)
k (ρ2k − 1)(ρ2k − ρk)

)∏k
i=1(ei + 1)2

is not negligible.
Similarly to the case in Subsection 4.5, the above formula is too small to be

applicable to current FESTA parameters. As a rough estimate, in order to get a
clean random self-reduction, the degree d of the secret isogeny should be around
four times larger than N . For an example of parameter set for which the formula
is useful, let p = 2a3b − 1, d = 34b and N = 2a. The formula becomes:

12× 34b22a−2

(2a3b − 1)
(
24(a−1)(22 − 1)(22 − 2)

)
(b+ 1)2

≈ 33b

23a

If 2a ≈ 3b, then the problem is randomly self-reducible. This is similar to the
previous case, with a efficiency loss factor of about 4 instead of 3. For example,
we could choose p = 2216 × 3137 − 1, N = 2216 and d = 3548. In this case,
the formula above is approximately equal to 2.84× 10−4. Hence, the problem is
randomly self-reducible for this parameter set.

5 Conclusion

Using the results in this paper, we find that there are families of SIDH variants
for which the problem of recovering the secret key can be shown to be randomly
self-reducible, providing support for the strategy of choosing a random starting
curve for these schemes. In particular, our results hold for Borel and Cartan
level structures, linked to zero-knowledge proofs (such as [10,15,3]) and FESTA
respectively.

In cases where our theorems do not imply random self-reducibility, such as for
M-SIDH, we have some plausibility arguments for why random self-reducibility
might not hold, since the associated isogeny graphs are either not connected, or
have an extra trivial eigenvalue and eigenvector. Of course, this conclusion does
not rule out the possibility of finding a reduction using another method.

The most direct avenue for future work would be to remove the conditions
on p and N modulo 12. In practice, for any supersingular isogeny graph, there
are at most two vertices that do not act like an undetected graph. As it is
an exponentially small fraction of the total number of vertices in the graph, it



would be surprising if they alone could affect the random self-reducibility of the
problem. Another direction for future work would be to improve the efficiency of
our reduction. For our results, we only use the fact that the graphs we are working
with are Ramanujan, giving us an upper bound on the second largest eigenvalue.
One could, in theory, obtain better reductions by finding smaller upper bounds
on some eigenvalues and applying them in the proof of Theorem 3.3.
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and LabEx CARMIN (ANR-10-LABX-59-01)

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. Dover, New York, ninth dover printing,
tenth gpo printing edn. (1964)

2. Arpin, S.: Adding level structure to supersingular elliptic curve isogeny graphs
(2024), https://arxiv.org/abs/2203.03531

3. Basso, A., Codogni, G., Connolly, D., De Feo, L., Fouotsa, T.B., Lido, G.M., Mor-
rison, T., Panny, L., Patranabis, S., Wesolowski, B.: Supersingular curves you can
trust. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology — EUROCRYPT
2023. pp. 405–437. Springer Nature Switzerland, Cham (2023)

4. Basso, A., Dartois, P., Feo, L.D., Leroux, A., Maino, L., Pope, G., Robert, D.,
Wesolowski, B.: Sqisign2d–west. In: Chung, K.M., Sasaki, Y. (eds.) Advances in
Cryptology – ASIACRYPT 2024. pp. 339–370. Springer Nature Singapore, Singa-
pore (2025)

5. Basso, A., Fouotsa, T.B.: New SIDH countermeasures for a more efficient key
exchange. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology — ASIACRYPT
2023. pp. 208–233. Springer Nature Singapore, Singapore (2023)

6. Basso, A., Maino, L., Pope, G.: FESTA: Fast encryption from supersingular torsion
attacks. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology — ASIACRYPT
2023. pp. 98–126. Springer Nature Singapore, Singapore (2023)

7. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay,
C., Stam, M. (eds.) Advances in Cryptology — EUROCRYPT 2023. pp. 423–447.
Springer Nature Switzerland, Cham (2023)

8. Castryck, W., Vercauteren, F.: A polynomial time attack on instances of M-SIDH
and FESTA. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology — ASI-
ACRYPT 2023. pp. 127–156. Springer Nature Singapore, Singapore (2023)

9. Codogni, G., Lido, G.: Spectral theory of isogeny graphs (2024), https://arxiv.
org/abs/2308.13913

10. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of knowledge.
In: Advances in Cryptology – ASIACRYPT 2022: 28th International Conference
on the Theory and Application of Cryptology and Information Security, Taipei,
Taiwan, December 5–9, 2022, Proceedings, Part II. p. 310–339. Springer-Verlag,
Berlin, Heidelberg (2023). https://doi.org/10.1007/978-3-031-22966-4_11

11. De Feo, L., Fouotsa, T.B., Panny, L.: Isogeny problems with level structure. In:
Joye, M., Leander, G. (eds.) Advances in Cryptology — EUROCRYPT 2024. pp.
181–204. Springer Nature Switzerland, Cham (2024)

https://arxiv.org/abs/2203.03531
https://arxiv.org/abs/2308.13913
https://arxiv.org/abs/2308.13913
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11


12. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: Countering sidh
attacks by masking information. In: Hazay, C., Stam, M. (eds.) Advances in Cryp-
tology — EUROCRYPT 2023. pp. 282–309. Springer Nature Switzerland, Cham
(2023)

13. Han, J.: The general linear group over a ring. Bulletin of the Korean Mathematical
Society 43 (08 2006). https://doi.org/10.4134/BKMS.2006.43.3.619

14. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press (2012),
https://books.google.ca/books?id=O7sgAwAAQBAJ

15. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography. pp. 19–
34. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

16. Jao, D., Miller, S.D., Venkatesan, R.: Expander graphs based on GRH with an
application to elliptic curve cryptography. Journal of Number Theory 129(6),
1491–1504 (Jun 2009). https://doi.org/10.1016/j.jnt.2008.11.006

17. Kawashima, T., Takashima, K., Aikawa, Y., Takagi, T.: An efficient authenticated
key exchange from random self-reducibility on CSIDH. In: Information Security
and Cryptology – ICISC 2020: 23rd International Conference, Seoul, South Korea,
December 2–4, 2020, Proceedings. p. 58–84. Springer-Verlag, Berlin, Heidelberg
(2020). https://doi.org/10.1007/978-3-030-68890-5_4

18. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology
— EUROCRYPT 2023. pp. 448–471. Springer Nature Switzerland, Cham (2023)
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