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Abstract—We present an efficient implementation of the supersingular isogeny Diffie-Hellman (SIDH) key exchange

protocol on 64-bit ARMv8 processors for 125- and 160-bit post-quantum security levels. We analyze the use of both

affine and projective SIDH formulas and provide a comprehensive analysis of both approaches based on the inversion-

to-multiplication ratio. Implementation results show that regardless of security concerns, affine SIDH is competitive with

the projective coordinates implementation, and even outperforms projective implementation in the final round of SIDH;

however, projective SIDH shows better overall performance for the whole key exchange protocol. Notably, over larger

finite fields, using optimized field multiplication leads to the much better performance of projective compared to affine

formulas. We integrate our optimized software into the open quantum-safe OpenSSL library and compare our software

with other available post-quantum primitives. The benchmark results on ARMv8 demonstrate speedup of up to 5X over

the generic version of SIDH implementation which is available inside the OQS library for the same quantum security

level. We observe that our highly-optimized implementation still suffers from a large number of operations for computing

isogenies of elliptic curves. However, in terms of communication overhead, supersingular isogeny-based cryptosystem

provides significantly smaller key size compared to its counterparts.

Index Terms—ARM assembly, elliptic curve cryptography, finite field, isogeny-based cryptosystems, OpenSSL, post-

quantum cryptography.

✦

1 INTRODUCTION

T HE possible impending arrival of large-scale
quantum computers capable of practically

performing Shor’s algorithm [1] in the near fu-
ture has motivated intensive research on the topic
of post-quantum cryptosystems. NIST’s recently-
published draft report on post-quantum cryptog-
raphy (PQC) [2] provides the guidance for re-
searchers to develop practical candidates for post-
quantum cryptosystems in various applications.
PQC research deals with investigation and study
of cryptographic algorithms that are believed to
be secure against quantum attacks. There exist
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several promising quantum-resistant cryptography
primitives which are claimed to be secure against
quantum computer attacks. Among all of them,
the NIST report identifies five classes of crypto-
graphic primitives which are regarded as leading
candidates for post-quantum cryptography, namely
code-based cryptography [3], multivariate cryp-
tography [4], hash-based cryptography [5], lattice-
based cryptography including the NTRU encryp-
tion scheme [6], and isogeny-based cryptography
[7].

In this paper, we consider the supersingular
isogeny Diffie-Hellman (SIDH) key-exchange pro-
tocol which was first introduced by Jao and De
Feo [8]. SIDH key exchange, like the classical
Diffie-Hellman key exchange protocol, is based on
the difficulty of solving a certain number-theoretic
problem, in this case, to construct an isogeny of
a particular degree between two given isogenous
supersingular elliptic curves, defined over a finite
field of characteristic p. To date, classical [9] and
quantum [10] attacks on isogeny-based cryptosys-
tems and its related problem, using claw-finding
algorithms ([11] and [12]) solve this problem in



1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2723891, IEEE
Transactions on Dependable and Secure Computing

2

O(p1/4) and O(p1/6) complexity on a classical and
quantum computer, respectively. We believe SIDH
is worth considering as an alternative to the four
leading PQC candidates because it features signifi-
cantly smaller key size [13], easier parameter gener-
ation, and a direct relationship between parameter
size and security level. Additionally, it provides
security assumptions based on elliptic curves and
the isogeny construction problem which have al-
ready been well-studied in other contexts prior to
the publication of SIDH such as cryptographic hash
functions [14].

The SIDH key exchange protocol was first im-
plemented by De Feo et al. [15]. Recently, a full-
fledged, optimized implementation of SIDH has
been proposed by Costello et al. [16] which is
targeted Intel x86-64 platforms, using projective
coordinates formulae. Their implementation is a
constant-time, almost inversion-free version of the
SIDH protocol which yields efficient performance
on Intel-based devices. However, on ARM plat-
forms, the status of SIDH implementation is cur-
rently less well-defined. Early efforts by Azarder-
akhsh et al. [17] suffered from the excessive num-
ber of operations caused by adopting generic ap-
proaches for finite field arithmetic. Recently, a
highly-optimized affine SIDH implementation on
32-bit ARMv7 using NEON vectorization by Koziel
et al. [18] still showed an order of magnitude dif-
ference between Intel and ARM processors in terms
of SIDH performance as measured by cycle counts
(with the caveat that direct comparisons between
different architectures with different word sizes are
only marginally useful). Therefore, in this work,
we address this gap and develop an optimized
implementation of both projective and affine SIDH
protocol for two quantum security levels on the
high-performance 64-bit ARMv8 Cortex-A57 core;
a massively popular platform with 65% worldwide
market share among smart phones and growing
importance in the server market [19]. We plan to
make all our source codes publicly available in the
near future.

To the best of our knowledge, this paper is the
first efficient implementation of SIDH on ARMv8
processors over two different quantum security
levels, and the first comparative implementation of
SIDH using projective and affine curve arithmetic
on any platform. Our main contributions are as
follows:

• Efficient, hand-optimized assembly implemen-
tation of finite field arithmetic on ARMv8 de-

vices, including comparison between the capa-
bilities of ARMv8 Advanced Single Instruction
Multiple Data (Adv. SIMD) and A64 instruction
sets.

• Optimized algorithms and libraries for both
projective and affine SIDH protocol on cutting-
edge ARMv8 platforms.

• Efficient implementation of projective and
affine SIDH for two different quantum security
levels using implementation-friendly primes.

• Comprehensive analysis and comparison be-
tween affine and projective SIDH formulas in
terms of performance and security.

• Detailed performance comparison of SIDH key
exchange protocol with other post-quantum
algorithms using the open quantum safe stan-
dard framework on ARMv8 processors.

2 PRELIMINARIES

This section describes the abstract concepts and
features of Diffie-Hellman key exchange from su-
persingular elliptic curve isogenies. We refer the
readers to [8] for the detailed explanation of the
protocol and underlying mathematics.

2.1 Supersingular Elliptic Curve Isogenies

Isogeny. Suppose E1 and E2 are elliptic curves
defined over a finite field Fq. An isogeny φ : E1 →
E2 is a non-constant rational map defined over
Fq such that φ is a group homomorphism from
E1(Fq) to E2(Fq) [20]. Two elliptic curves E1 and
E2 defined over Fq are isogenous if there exists an
isogeny φ : E1 → E2 over Fq; two elliptic curves
are isogenous over Fq if and only if they have
the same cardinality [21]. Isogenous elliptic curves
are either all supersingular or all ordinary and
in the case of SIDH protocol, only supersingular
elliptic curves are considered. Moreover, among
all supersingular elliptic curves, only curves with
smooth orders are used in the protocol, because
isogenies of exponentially large degree can be ef-
ficiently constructed based on compositions of low
degree isogenies. More precisely, let p be a prime
of the form p = ℓeAA ℓeBB f ± 1 such that ℓA and ℓB are
small prime numbers and f is an integer cofactor.
In this case, a supersingular elliptic curve E can
be efficiently constructed over Fp2 , having smooth

order
(

ℓeAA ℓeBB f
)2

[22].
ℓ-torsion subgroup. The ℓ-torsion subgroup of an

elliptic curve (E [ℓ]) is defined as the set of all geo-
metric points P on the curve E, i.e., points defined
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Alice Bob

mA, nA

RA=[mA]PA+[nA]QA

ËA(PB), ËA(QB), EA

ËA: E0 : EA/RA

ËB(RA)=[mA] ËB(PA)+[nA] ËB(QA)

Ë'A: EB : EAB / ËB (RA) 

 j(EAB)=j(EBA)

ËA(RB)=[mB] ËA(PB)+[nB] ËA(QB)

Ë'B: EA : EBA / ËA (RB) 

ËB(PA), ËB(QA), EB

 RB=[mB]PB+[nB]QB 

ËB: E0 : EB/RB

mB, nB

Figure 1: SIDH key exchange protocol [8]. Alice and Bob generate their public keys based on the
public parameters. They exchange their public keys and both compute the final isomorphic curves. The
computed curves have the same common j-invariant value.

over the algebraic closure of the field of definition
of E, such that ℓP = O. In case of supersingular
curves and a prime of the form p = ℓeAA ℓeBB f ±1, the
ℓeAA -torsion and ℓeBB -torsion groups are defined over
Fp2 (E[ℓeAA ], E[ℓeBB ] ⊆ E (Fp2)). Since ℓA, ℓB ∤ p, we
can conclude E

[

ℓeAA
]

∼= (Z/ℓeAA Z) × (Z/ℓeAA Z) and
E
[

ℓeBB
]

∼= (Z/ℓeBB Z) × (Z/ℓeBB Z) [20]. Now, let m
and n be two random integers, and P , Q be two
points on the supersingular elliptic curve E which
generate E

[

ℓeAA
]

(or E
[

ℓeBB
]

) as an Abelian group, of
order ℓeAA (or ℓeBB , respectively). A point of the form
[m]P +[n]Q has order dividing ℓeAA (or ℓeBB ) and this
point generates a finite subgroup which we use as
the kernel of an isogeny in the SIDH protocol. For
a given finite subgroup R of E, an isogeny over
E having kernel R, i.e., φ : E → E/〈R〉, can be
efficiently computed using Vélu’s formulas [23].

2.2 Diffie-Hellman Key Exchange Protocol

In the first round of SIDH key exchange, Alice
and Bob compute the graphs of isogenies of degree
ℓeAA and ℓeBB separately to construct two isogenous
elliptic curves [8]. In the second round, they “trade”
kernels and each computes a second isogeny which
lands on the same (isomorphic) curve, with the
same j-invariant value, which can then be used
as the shared secret key for a secure session. Alice
and Bob decide on some public parameters before
the key exchange procedure. These parameters are
a supersingular elliptic curve E0 defined over Fp2

with smooth cardinality
(

ℓeAA ℓeBB f
)2

, two indepen-
dent points PA and QA which together generate
the ℓeAA -torsion subgroup, i.e., E

[

ℓeAA
]

, and two
independent points PB and QB which together
generate the ℓeBB -torsion subgroup, i.e., E

[

ℓeBB
]

. The
key exchange protocol consists of four steps to
generate the secure shared key between two parties
as follows:

1) Alice chooses two secret integers mA, nA ∈
Z/ℓeAA Z, not both divisible by ℓA. She com-
putes the double point multiplication RA =
[mA]PA + [nA]QA to compute a point RA of
order dividing ℓeAA . Using her private key,
i.e., (mA, nA), she computes the secret isogeny
φA : E0 → EA/〈RA〉. She also computes the
image points φA(PB) and φA(QB). Her public
key is the curve EA, φA(PB), and φA(QB)
together which are sent to the other party.

2) Bob similarly chooses two secret integers
mB, nB ∈ Z/ℓeBB Z, not both divisible by ℓB.
He computes the secret isogeny φB : E0 →
EB/〈RB〉, using the kernel RB = [mB ]PB +
[nB]QB of order dividing ℓeBB , while (mB , nB)
is his private key. He then computes φB(PA)
and φB(QA), and publishes his public key EB ,
together with φB(PA) and φB(QA).

3) Alice computes another isogeny
φ′

A : EB → EAB/〈φB(RA)〉, such that
φB(RA) = [mA]φB(PA) + [nA]φB(QA).
Bob computes the isogeny φ′

B : EA →
EBA/〈φA(RB)〉, whose kernel is the point
φA(RB) = [mB]φA(PB) + [nB]φA(QB).

4) Alice and Bob now compute two isomor-
phic curves with the same j-invariants, i.e.,
j(EAB) = j(EBA), and they use this value as
their shared secret key.

Figure 1 illustrates the required “steps” which Alice
and Bob take to construct two isomorphic curves
with the same j-invariants. A detailed discussion
of SIDH security is given in [8], [15].

3 IMPLEMENTATION-FRIENDLY PRIMES

The SIDH key-exchange protocol is constructed on
the isogeny classes of supersingular elliptic curves
with smooth orders, taking advantage of their spe-
cial shape to compute isogenies of large degree
efficiently. Since all the arithmetic are performed
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in Montgomery space, for efficiency reasons which
will be discussed later, we choose to use primes
of the form p = 2eAℓeBB f ± 1 in our implementa-
tion. Recently, Bos et al. [24] provided a system-
atic overview of techniques to compute efficient
arithmetic over SIDH key-exchange protocol. Their
findings illustrate that for the fast arithmetic com-
putation inside the SIDH key-exchange protocol,
regardless of affine or projective formulas, it is
more convenient to use the primes of the form
p = 2eAℓeBB ± 1, since they make the Montgomery
reduction computation much more optimized be-
cause of their special shape. We set the second base
prime of our smooth prime equal to ℓB = 3 for
the sake of simplicity in the implementation of our
isogeny computations compared to larger degrees
like ℓB = 19 which is suggested in [24]. We also
ensure that our implementation primes satisfy the
security balance between Alice and Bob. That is,
the difference between the size of the two prime
powers is not too large, i.e., |2eA − 3eB | < 240.

Below, we discuss the properties of two moduli
which we use in our implementation. The 751-bit
prime was first proposed by Costello et al. [16] in
the first version of projective SIDH implementa-
tion. We optimize their implementation on ARMv8
processors using our efficient arithmetic library to
investigate the efficiency of their software on ARM
processor and provide a full comparison of recent
attempts on SIDH key-exchange implementations.

3.1 The Modulus p751 = 2372 · 3239 − 1

The prime field provides 125-bit post-quantum se-
curity level and the arithmetic computations can
be implemented efficiently using 12× 64-bit words
on 64-bit platforms. The first performance eval-
uation of projective SIDH key-exchange software
using this prime was optimized for Intel processors.
In this work, we independently implemented the
same software using our ARMv8 optimized library
to explore the performance of projective SIDH on
64-bit ARM processors as a reference. We remark
that recently published optimized library [25] of
projective SIDH on ARMv8 platforms over this
finite field, and efficient ARMv8 filed arithmetic
library [26] for SIDH key compression demonstrate
comparable performance results with this work.

3.2 The Modulus p964 = 2486 · 3301 − 1

We introduce our 964-bit implementation-friendly
prime which provides theoretical 160-bit post-
quantum security level. At first sight, this prime

does not seem to be an efficient prime for imple-
menting on 64-bit platforms since in the normal
representation, it takes 16×64-bit words with only 4
bits in the last word. Nonetheless, as we will show
in the following section, arithmetic over this prime
can be efficiently implemented using redundant
radix representation technique and delayed carry
propagation. Furthermore, since the 7 least signifi-
cant words of the prime are all equal to “1”, as it
will be discussed later, the Montgomery reduction
implementation can be significantly optimized.

4 IMPLEMENTATION METHODOLOGY ON

ARMV8

This section presents the implementation methods
and algorithms used in our finite field library. The
proposed implementation methodology provides a
detailed performance comparison between two dif-
ferent sets of instruction based on ARMv8 platform
capabilities: A64 instructions using general registers
and Adv. SIMD instructions using vectorization.

4.1 Targeted Architecture

The proposed implementation is optimized for the
64-bit Cortex-A series with ARMv8 support, with a
special focus on the high-performance Cortex-A57
processor. This processor is equipped with fully out-
of-order execution pipeline on both ARM and Adv.
SIMD units. In many platforms, Cortex-A57 cores
are combined with Cortex-A53 cores in the ARM
big.LITTLE architecture, with the power-efficient
A53 core used for standby tasks.

ARMv8 processors are capable of performing fast
integer arithmetic using Adv. SIMD and A64 in-
structions. Table 1 presents a list of both Adv. SIMD
and A64 arithmetic instructions that are required
for finite field arithmetic implementation together
with their latencies in clock cycles. In this table, ex-
ecution latency is defined as the minimum latency
seen by an operation, while execution throughput
is referred to the maximum throughput of a specific
instruction (instruction/cycle) [27]. The instruction
descriptions are as follows:

• UMULL performs 2 unsigned 32 × 32 multipli-
cations and produces a pair of 64-bit products.

• ADD (Adv. SIMD) performs 2 unsigned 64-bit
additions.

• LD4, ST4 load and store 4 128-bit vectors of
data simultaneously.
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Table 1: Instructions performance comparison for
ARMv8 Cortex-A57 A64 and Adv. SIMD [27]

Architecture Instruction
Execution Execution
Latency Throughput

Adv. SIMD

UMULL 5/4 1
ADD 3 2
LD4 11 1/4
ST4 8 1/8

A64

MUL 3 1
UMULH 6 1/4
ADD 1 2
LDP 4 1
STP 1 1

• MUL performs an unsigned 64 × 64 multiplica-
tion and produces a single 64-bit register as the
least significant half of the product.

• UMULH performs an unsigned 64× 64 multipli-
cation and produces a single 64-bit register as
the most significant half of the product.

• ADD (A64) performs one unsigned 64-bit addi-
tion.

• LDP, STP load and store a pair of 64-bit general
purpose registers simultaneously.

In the following section, we will present our im-
plementation approach based on these instructions
and their timings in more details.

4.1.1 ARMv8 A64 vs. Adv. SIMD Arithmetic Imple-

mentation

The Adv. SIMD instruction set and its capabilities
in ARMv8 are very similar to ARMv7 NEON ca-
pabilities except for the number of vector registers.
AArch64 provides 31×64-bit general-purpose regis-
ters as well as 32×128-bit vector registers which is
almost twice as the number of available registers
in ARMv7 platforms [19]. This large number of
registers reduces data transfer operations between
registers and memory significantly, and offer more
efficient implementation of relatively-large finite
field arithmetic.

ARMv8 Adv. SIMD is capable of computing
multiplications over two pairs of 32-bit values to
produce one pair of 64-bit products at a time. On
the other hand, A64 multiplication instruction is
capable of computing one pair of 64-bit products
using two multiplication instructions, one for the
least significant half (LSH) using MUL instruction,
and one for the most significant half (MSH) using
UMULH instruction. As a result, each 128-bit partial
product can be computed using a single multiplica-
tion instruction in Adv. SIMD and two multiplica-

a1 a0

b1 b0

a2a3

b2b3

a0b0a1b0

32 bits

32 bits

64 bits

V0

V1

V2

(a)

a0

b0

64 bits

64 bits

64 bits

X0

X1

X3 X2

LSH(a0b0)MSH(a0b0) 

(b)

Figure 2: Multiplication using (a) Adv. SIMD and
(b) A64 instructions.

tion instructions using A64 general-purpose regis-
ters. However, regardless of the difference between
latency and throughput of multiplication instruc-
tions in A64 and Adv. SIMD, as it is illustrated in
Fig. 2, the computing word size in A64 general-
purpose architecture is twice as Adv. SIMD regis-
ters. In contrast to ARMv7 32-bit platform where
both A32 general-purpose registers and NEON vec-
torization architecture provide the same 232-radix
representation of operands and taking advantage of
parallel 32×32 multiplication of NEON instruction
results in remarkable performance improvement
in finite field arithmetic implementation [18], [28],
[29].

The extra number of words in ARMv8 Adv. SIMD
requires twice as many single-precision multipli-
cation compared to A64 which has a considerable
effect on performance. However, as it is discussed,
since 128-bit partial products can be computed
using single Adv. SIMD multiplication instruction,
the total number of multiplication instructions for
a multi-precision multiplication function will be
the same for both designs. This fact makes the
SIMD design comparable to A64 implementation;
however, based on execution latencies in Table 1,
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Table 2: Performance comparison (CPU clock cy-
cles) of 751-bit finite field school-book multiplica-
tion on a single ARM Cortex-A57 core using A64
general registers vs. Adv. SIMD vectorization

Operation A64 Adv. SIMD

Multiplication 1,041 1,363

Montgomery Reduction 627 820

the total cycle counts for two multiplication in-
structions in Adv. SIMD is more than the over-
all execution cycles for MUL and UMULH instruc-
tions on Cortex-A57 processors; thus, we remark
that using A64 general-purpose registers should
provide faster timing results compared to Adv.
SIMD implementation on ARMv8 platforms. To
confirm this claim, we implemented two versions
of optimized 751-bit school-book multiplication and
Montgomery reduction over p751 finite field in
assembly using A64 and Adv. SIMD instruction
sets. For Adv. SIMD implementation, we deployed
the same strategy which was first introduced in
[28] and deployed in [18] for SIDH implementation.
The performance results on a Cortex-A57 core in
Table 2 show that unlike ARM-NEON implemen-
tation on ARMv7 platforms, ARMv8 Adv. SIMD
performance suffers from extra radix representation
and does not provide any improvement compared
to A64 design. Therefore, we choose to implement
our ARMv8 optimized finite field arithmetic library
using ARMv8 A64 assembly instructions, taking
advantage of its wide 64-bit general-purpose reg-
isters.

4.2 Arithmetic in Fp

Finite field arithmetic is the fundamental building
block in number-theoretic cryptographic protocols.
The SIDH protocol implementation works over
quadratic extension fields Fp2 [15]. However, the
arithmetic over this field is implemented based
on finite field arithmetic over the base field Fp.
Thus, highly-optimized field arithmetic modulo p
is necessary for developing SIDH fast implementa-
tion. The needed operations are finite field addition,
squaring, multiplication, and inversion.

4.2.1 Finite Field Addition and Subtraction

For ARMv8, field addition can be implemented
efficiently using A64 instructions since addition and
subtraction instructions are capable of adding and

subtracting 64-bit operands, respectively, using a
single instruction.

The multi-precision field addition is imple-
mented by loading operands into two 64-bit reg-
isters at a time using LDP instruction and adding
the carry bit. For constant-time implementation, at
the end of addition operations, the negative of the
prime value is added to the result. Based on a bit-
mask, the prime value or zero is re-added to this
result again in order to correct the final result if it
is larger than the prime value.

Similarly, the field subtraction is implemented
using subtraction instruction with borrow. For
constant-time implementation, the prime value is
added to the result and, according to a bit-mask,
the final result is computed.

4.2.2 Finite Field Multiplication

In this work, finite field multiplication is performed
over two different fields. We adopt different ap-
proaches for computing finite field multiplication
for each field, taking advantage of the special form
of the primes.

751-bit multiplication. Each 751-bit element can
be represented using 12×64-bit registers on 64-
bit platforms. The large number of 64-bit regis-
ters on ARMv8 processors provides the capabil-
ity of optimized arithmetic implementation over
relatively large finite fields. Specifically, since data
load instructions from memory into registers take
a considerable amount of execution time on the
ARM platform, compact implementation of multi-
precision multiplication is desirable. To this end, we
implemented 751-bit multiplication using Comba
multiplication algorithm. We notice that the num-
ber of registers on ARMv8 processors is redundant
enough to implement multiplication over this field
only with a small number of data transfers between
memory and registers. However, over larger finite
fields, the Comba multiplication performance dep-
recates due to memory transfer instructions.

964-bit multiplication. 964-bit operands can be
represented using 16×64-bit registers on ARMv8
processors. The main disadvantage of this repre-
sentation is that the most significant word only
contains 4-bit data which leads to considerable
redundancy in the representation and thereby per-
formance downgrading. However, in this section,
we explain how to take advantage of this redundant
representation to reduce the cost of carry propa-
gation using two-level Karatsuba multiplication. A
similar approach has been used before in [30] by
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merging “refined Karatsuba” multiplication with a
subsequent modular reduction, targeting ARMv7
Cortex-A8 processors. However, their implemen-
tation benefits significantly from intermediate re-
duction over a Mersenne prime which cannot be
utilized in our setting.

We decompose an integer a modulo p964 into 16
× 64-bit registers in mixed, yet symmetric radix
representation. We represent a as a0 + 264a1 +
2128a2 + 2192a3 + 2241a4 + 2305a5 + 2369a6 + 2433a7 +
2482a8+2546a9+2610a10+2674a11+2723a12+2787a13+
2851a14+2915a15. Note that since Adv. SIMD vector-
ization does not provide any performance benefits
on ARMv8 platforms, as it is illustrated in Fig.
3, we only set a3, a7, a11, and a15 in redundant
representation. These limbs contain 49 bits, while
other limbs include 64 bits. With this decomposi-
tion, we are able to design our tailored two-level
Karatsuba multiplication for 964-bit elements. Each
limb a3, a7, a11, and a15 is smaller than 64 bits and
can be fit into ARMv8 general-purpose registers.
Moreover, there is enough space available in these
limbs that can be exploited to delay carry propaga-
tion operations in Karatsuba multiplication.

For the first level of Karatsuba multiplication,
one 16-word integer a is divided into two 8-word
integers A0 and A1, i.e., a = A0 + 2482A1 as:

A0 = a0 + 264a1 + 2128a2 + 2192a3

+ 2241a4 + 2305a5 + 2369a6 + 2433a7;

A1 = a8 + 264a9 + 2128a10 + 2192a11

+ 2241a12 + 2305a13 + 2369a14 + 2433a15.

We also decompose the other operand b applying
the same strategy and we have:

a · b = A1B12
964 + [(A0 +A1) · (B0 +B1)

−A1B1 −A0B0]2
482 +A0B0.

For the second level of Karatsuba multiplication,
we split each 8 words of A0 and A1into two 4-limb
integers (A00, A01, A10, A11). Now, we show A0 =
A00 + 2241A01 and A1 = A10 + 2241A11 as:

A00 = a0 + 264a1 + 2128a2 + 2192a3;

A01 = a4 + 264a5 + 2128a6 + 2192a7;

A10 = a8 + 264a9 + 2128a10 + 2192a11;

A11 = a12 + 264a13 + 2128a14 + 2192a15.

We apply the same decomposition for B0 and B1

to acquire B00, B01, B10, and B11. Now, we compute
A0B0 and A1B1 as:

Table 3: Performance comparison (CPU clock cy-
cles) of 964-bit finite field multiplication on a single
ARM Cortex-A57 core

Algorithm Cycles

Two-level Karatsuba 1,244

Comba 1,636

A0B0 = A01B012
482 + [(A00 +A01) · (B00 +B01)

−A01B01 −A00B00]2
241 +A00B00,

A1B1 = A10B102
482 + [(A10 +A11) · (B10 +B11)

−A11B11 −A10B10]2
241 +A10B10.

On the lowest level, we compute 4-limb integer
multiplication using Comba multiplication which
can be efficiently implemented using A64 general-
purpose registers on ARMv8 without extra memory
transfer instructions.

To evaluate the performance of our proposed
multiplication strategy, we also implemented 964-
bit multiplication using Comba multiplication algo-
rithm in ARM assembly and provided the timing
results in Table 3. We verified that our tailored
two-level Karatsuba multiplication performs almost
24% faster than Comba multiplication on our tar-
geted processor.

4.2.3 Finite Field Reduction

We choose to use prime of the form p = 2α· 3β−1 for
our ARM-based software because of its efficient fea-
tures. We deployed the same reduction technique
mentioned in [16] instead of generic Montgomery
[31] or Barret [32] reduction algorithms. The pro-
posed technique is novel and yet straightforward
to implement. That is, instead of computing the
Montgomery residue c = aR−1mod p for an input
a < pR, by using

c =
(

a+
(

ap′ mod 2R
)

· p
)

/2R

which requires roughly s2 + s multiplications for a
2s-limb value a in generic form, computations can
be simplified to

c =
(

a+
(

ap′ mod 2R
)

· 2α· 3β −
(

ap′ mod 2R
)

)

/2R

= a/2R +
(

(

ap′ mod 2R
)

· 3β
)

/2R−α

for p = 2α· 3β − 1. Based on the above formula,
instead of multiplication with the prime value, the
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Figure 3: Two-level Karatsuba multiplication for 964-bit operands.

multiplication with p + 1 = 2α · 3β is computed
which has exactly

⌊

α
r

⌋

least significant words equal
to “0” for 2r-radix representation of elements. For
instance, p751+1 and p964+1 have five and seven
least significant words equal to “0”, respectively,
which can simply be eliminated. Additionally, one
can simply notice that the primes of this form are
also Montgomery-friendly primes [33] which reduces
the s2 + s multiplications to s2 multiplications for
a 2s-limb value, since p′ = −p−1 mod 2R is equal to
1 and s multiplications are eliminated. We imple-
mented optimized Comba-based Montgomery re-
duction in product scanning form for both primes.

4.2.4 Finite Field Inversion

There exist different approaches to compute the
inverse of an operand over a finite field. These
approaches differ in complexity as well as secu-
rity due to constant or non-constant implementa-
tions. Constant-time modular inversion algorithms
are significantly slower than their non-constant
counterparts, but since they are resistant against
power analysis attacks, they are more desirable for
cryptography applications. For instance, as it was
pointed out in [34], using projective representation
can reveal information about secret data during
the conversion from projective to affine coordinates.
Therefore, regardless of performance degradation, a
constant-time inversion method should be adopted
in projective settings.

One constant-time approach is Fermat’s Little
Theorem (FLT) which computes the field inversion
based on x−1 = xp−2 mod p, using field multi-
plication and squaring in O(log3 p). This method
of computing inversions is computationally inten-
sive, and it is mostly deployed when the use of
field inversion is scarce inside the protocol since
otherwise the performance degradation would be
catastrophic. As an alternative, Bos’s constant-time
inversion algorithm [35] computes the inversion of

an element based on the binary GCD without using
any field multiplication or squaring.

The first projective based SIDH key exchange im-
plementation [16] includes only one field inversion
at the very end of each key exchange step. More-
over, inversion computation using addition chains
significantly benefits from Montgomery arithmetic
inside the protocol. Therefore, using constant-time
FLT algorithm for inversion seems to be reason-
able in their settings leading to only minor per-
formance degradation. Nevertheless, since the pro-
posed method in [35] also provided more efficient
timings on ARM-powered devices compared to
FLT, we explored the performance impact of using
this approach in our projective SIDH software for
both security levels. In particular, since ARM pro-
cessors are not as resource-rich as Intel processors,
even a small fraction of optimization is desirable.

We have implemented the binary GCD in-
version algorithm using hand-written assembly
instructions on our target processor. The pro-
posed constant-time implementation in [35] in-
cludes multi-precision addition, subtraction, and
shift operations over the finite field as well as sim-
ple logic operations on word-size operands. Since
the proposed implementation is constant-time, the
total number of 2 ⌈log2(p)⌉ iterations are performed
for every input. Based on the implementation re-
sults in [35], we expected to see more than 2
times faster inversion software compared to FLT
algorithm. However, we observed significant differ-
ence in our implementation results on 64-bit ARM
processor. Table 4 summarizes the performance cost
on our benchmark platform over the 751-bit and
964-bit finite field inversion. We observe that using
FLT algorithm provides faster results compared to
binary GCD algorithm for both 751-bit and 964-
bit primes. Note that these timing results are ob-
tained using our highly-optimized arithmetic li-
brary for both inversion methods. Furthermore, for
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Table 4: Performance numbers in 103 cycles for
finite field inversion modulo 751-bit and 964-bit
SIDH primes on ARM Cortex-A57

Constant time Non-constant time
Prime FLT Binary GCD EEA
p751 1,368 1,792 31
p964 2,570 2,939 40

constructing addition chains inside FLT algorithm,
we used 6-bit window method with precomputed
table. In this case, the table includes only required
exponents of an element a up to a63. We address
the difference between our timing results and the
results presented in [35], regardless of the target
platform, as in our implementation, we use highly-
optimized multiplication and squaring functions as
well as using Montgomery arithmetic for comput-
ing large exponentiation. Moreover, the presented
results in [35] are based on binary method for com-
puting exponentiation in FLT which requires almost
b modular squarings and b

2
modular multiplications

for generic b-bit prime moduli p, in contrast to
our window-based implementation which includes
much less modular multiplications and thereby is
more efficient.

In contrast to projective SIDH formulas, affine
SIDH software requires hundreds of modular in-
versions for each step of the key exchange protocol.
As a result, the only comparative implementation
of affine SIDH software can be developed using a
non-constant time inversion method as it is used in
[15], [17], and [18]. Among different non-constant
time methods of computing modular inversion,
the Extended Euclidean Algorithm (EEA) can be
deployed to compute the inverse of an operand at
a significantly lower time complexity of O(log2 p)
compared to FLT, but with leaking some informa-
tion about the value being inverted from simple
power analysis and timing attacks [36]. However,
to provide some level of protections against timing
attacks in affine SIDH software, a random value
can be multiplied to the operand before and af-
ter the inversion. This requires two extra modular
multiplications, but the additional defense against
timing attacks necessitates this minor performance
degradation. Like the previous versions of affine
SIDH implementations, we also choose to use EEA
method inside our affine SIDH software for mod-
ular inversions. The EEA implementation deploys
our optimized arithmetic library for multiplication
and reduction besides the GNU multi-precision

library for computing the inverse of an element.
We included the performance cost of this method
on our benchmark platform in Table 4 for both finite
fields.

Since the proposed primes in this work have the
number of bits smaller than the multiple of 64-
bit word, we adopt a combination of Karatsuba
multiplication, carry-handling elimination, and lazy
reduction in extension field arithmetic for achieving
better performance similar to [16] and [37].

5 AFFINE vs. PROJECTIVE SIDH

This section compares two different approaches of
implementing SIDH protocol, namely the projective
isogeny formulas presented by Costello et al. [16]
and affine isogeny formulas introduced by De Feo
et al. [15]. From the security point of view, the most
significant distinction between these two formulas
is that the projective isogeny provides constant-
time, almost inversion-free point and isogeny arith-
metic. However, in terms of performance, we need
to look at the relative cost of an inversion which is
used in the affine formulas and compare it with
the cost of additional multiplications needed for
projective formulas. To this end, we use the inver-
sion/multiplication ratio, denoted as Rp = Ip/Mp

over Fp and Rp2 = Ip2/Mp2 over Fp2 . The Rp ratio
indicates the cost of an inversion to the cost of
a multiplication over Fp, while Rp2 denotes the
cost of an inversion to the cost of a multiplication
over extension field Fp2 . In the case of constant-
time inversion such as FLT for generic b-bit prime
moduli p, using the addition chains method, the
Rp ratio is equal to several hundreds and almost
a thousand over our 751-bit and 964-bit prime
fields, respectively; in contrast to non-constant time
inversion algorithms like EEA, in which the cost of
an inversion to the cost of a multiplication is signif-
icantly smaller. Since the only required inversion in
SIDH protocol is over the quadratic extension field
Fp2 , the Rp2 ratio should be taken in consideration.

Let β = b0 + b1α ∈ Fp2 be a non-zero element,
where α2 = γ ∈ Fp. The multiplicative inverse of β
can be computed as follows:

β−1 =
1

b0 + b1α
=

b0 − b1α

b2
0
− b2

1
γ
=

b0
b2
0
− b2

1
γ
−

b1α

b2
0
− b2

1
γ
.

The inverse of β can be computed in Ip2 = Ip +
2Mp + Mγ + 2Sp + subp + negp. Roughly, we can
assume Ip2 ≤ Ip+6Mp. On the other hand, the cost
of multiplication in the quadratic extension field is
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Table 5: Field arithmetic timings over the p751 and p964 prime fields on a single core ARM Cortex-A57
(average over 104 operations in CPU cycles (cc))

C ASM

Prime Field Add Mul Inv (EEA) R=I/M Add Mul Inv (EEA)∗ R=I/M

p751
Fp 53 2,966 31,592 10.65 46 1,636 31,592 19.31

Fp2 645 10,560 40,205 3.81 130 6,101 38,623 6.33

p964
Fp 74 4,499 40,425 8.98 61 2,312 40,425 17.48

Fp2 728 15,563 59,541 3.82 167 7,647 55,979 7.32

* Inversion over Fp is implemented only using GMP library.

Mp2 ≥ 3Mp, since Mp2 = 3Mp+Mγ+2addp + 2subp.
Thus,

Rp2 = Ip2/Mp2 ≤ (Ip/3Mp) + 2 = Rp/3 + 2,

which implies that for large ratio Rp, the Rp2 ra-
tio is almost equal to Rp/3. Note that relatively-
small Rp2 ratios make affine formulas faster than
projective formulas in some implementations and
settings, while larger values of Rp2 indicate projec-
tive formulas outperform its counterpart. Based on
[16], SIDH projective formulas show much better
performance on x86-64 Intel processors. However,
the inversion to multiplication ratio on other plat-
forms and architectures might lead to performance
improvements for affine SIDH implementations. To
investigate this possibility, we give detailed perfor-
mance numbers for both base field and quadratic
extension field modular arithmetic on our target
platform. This includes the inversion to multipli-
cation ratios for both fields. In Table 5, we provide
performance in terms of cycle counts for the SIDH
required modular field arithmetic over Fp and Fp2 ;
results represent both generic C implementation
using GMP1 library and optimized assembly using
our assembly library.

The last column in Table 5 shows the inversion
to multiplication ratio cost for each implementation.
As it is indicated in this table, the ratios are much
smaller for the quadratic extension field than the
base field and as we expected Rp2 ≤Rp/3 + 2.

Recall that the large values of Rp2 indicate that
affine SIDH performance suffers from excessive
number of inversions. Thus, the projective SIDH
is expected to show more efficient results. Table 5
shows that the Rp2 ratio for our optimized imple-
mentation is almost twice as the C implementation
for both finite fields. Notably, efficient implemen-
tation of finite field multiplication over p964 field

1. GNU MP Bignum Library

increases the Rp2 ratio significantly which should
translate to better speedup of using projective SIDH
over p964 compared to p751 implementation.

Based on these observations, we claim that pro-
jective formulas performance benefits significantly
from optimized implementation of finite field mul-
tiplication. Thus, comparison between affine and
projective SIDH performance is directly related to
the target platform and field multiplication imple-
mentation. In the next Section, we evaluate perfor-
mance results of the SIDH protocol for both affine
and projective implementations on ARM Cortex-
A57 processor.

6 IMPLEMENTATION RESULTS AND DISCUS-
SION

In this section, we present the performance results
of both affine and projective SIDH key exchange
protocol software on the high-performance ARM
Cortex-A57 processor. We use the exact same op-
timized field library for both affine and projective
implementations over each finite field. Moreover,
we set curve parameters a = 0 and b = 1 to
construct the elliptic curve E/Fp2 : y2 = x3 + x as
the starting Montgomery curve.

To evaluate the performance of the SIDH key
exchange protocol, both affine and projective codes
are compiled using the standard operating sys-
tem on the Juno ARM Development Platform. The
software is compiled with Linaro GCC v4.9.4 on
a single core 1.1GHz ARM Cortex-A57 running
OpenEmbedded Linux v4.5.0. Results represent the
average of 103 iterations, reported in clock cy-
cles to ease comparison. We measured CPU time
and scaled the number to clock cycles using the
processor frequency; accordingly, the cycle counts
reported here represent an upper bound on the
actual execution time.
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Table 6: Performance results (×106 CPU clock cycles) of affine and projective coordinates for SIDH key exchange

protocol on different platforms for various quantum security level.

Work Lang. Device
Field PQ

Coordinate
Timings [cc ×10

6 ]

size Security Alice R1 Bob R1 Alice R2 Bob R2 Total

Costello et al. [16] ASM
Haswell

751 125 Proj.
51 59 47 57 214

Sandy Bridge 54 64 51 61 230

Koziel et al. [18]
C

Cortex-A15
751 125

Affine
437 474 346 375 1,632

ASM 1008 167 603 657 516 484 2,259

Azarderakhsh et al. [17] C Cortex-A15
771 128

Affine
N/A N/A N/A N/A 3,009

1035 170 N/A N/A N/A N/A 6,477

This Work

ASM

Cortex-A57

751 125
Affine 132 143 106 112 493

Proj. 103 118 97 113 431

964 160
Affine 276 291 223 231 1,021

Proj. 201 226 188 233 848

C

751 125
Affine 210 225 168 180 783

Proj.∗ 568 671 528 633 2,400

964 160
Affine 436 455 350 365 1,606

Proj. 1,323 1,502 1,230 1,421 5,476

* The main portable C code from [16] is evaluated on ARM Cortex-A57 processor. The radix was changed to 264 on ARM paltform.

6.1 Benchmark Results

Table 6 includes the benchmark results of our affine
and projective software over two security levels.
As we expected, the optimized version of projec-
tive formulas computes the key exchange protocol
faster than affine formulas over both finite fields.
However, we notice that affine software slightly
outperforms its projective counterparts for the final
round of the protocol and show better performance.
Furthermore, the difference between projective and
affine formulas are more dominant over p964 finite
field as we expected based on our I/M analysis.
Timing results indicate that the optimized projec-
tive SIDH performs almost 14% and 20% faster than
affine SIDH over p751 and p964 fields, respectively.

6.2 Comparison

Since this work provides efficient implementation
of the SIDH protocol on ARMv8 processors, we
compare our results with previous implementations
on ARM-powered devices at the same level of
security. The only other publicly available opti-
mized implementations of SIDH are [17], [16], [18]
which only provide generic implementations on
ARMv8 platforms. As we expected, our optimized
software performs much better than generic imple-
mentations. In particular, although the optimized
SIDH projective implementation of [16] only targets
x86_64 Intel processors, we compiled their generic
implementation on our target platform for com-

parison, with the understanding that their portable
version is not optimized for our platform.

If we compare our implementation to that of
[16] on different target platforms, our optimized
implementations are 2 times slower in terms of
cycle counts, mainly because of differences between
ARM and Intel processor architectures. ARM pro-
cessors are based on RISC (Reduced Instruction Set
Computing) architecture which focuses on power-
efficiency, while Intel processors are based on CISC
(Complex Instruction Set Computing), making di-
rect cross-architecture comparisons of limited util-
ity.

In comparison with other ARM-based implemen-
tations, our software is the fastest SIDH key ex-
change implementation for a given post-quantum
security level.

6.3 Open Quantum Safe Benchmark

In this section, we compare other quantum-resistant
cryptographic primitives with SIDH in terms of
performance, security and communication over-
head. Bos et al. [41] recently proposed a new
quantum-resistant primitive based on lattices. They
compared the implementation metrics of their pro-
posed key exchange protocol with other quantum-
resistant primitives on the x86_64 architecture.

To evaluate the efficiency of our software, we
integrated our optimized implementation of projec-
tive SIDH key exchange into both liboqs and Open
Quantum Safe OpenSSL projects [42]. The OpenSSL
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Table 7: Performance evaluation of post-quantum cryptography key exchange protocols. All the results are

generated by Open Quantum Safe OpenSSL library, compiled and evaluated on a single core ARMv8 Cortex-A57

processor

Protocol Lang. Alice0 (ms) Bob (ms) Alice1 (ms)
Communication

PQ Security(bytes)
A → B B → A

RLWE BCNS [38] C 2.85 4.65 0.695 4,096 4,224 76

RLWE NewHope [39] C 0.284 0.442 0.106 1,824 2,048 206

RLWE MSR [40] C 0.199 0.361 0.065 1,824 2,048 206

LWE Frodo Recomm. [41] C 59.3 59.9 0.427 11,280 11,288 130

SIDH [16] C 497 1114 468 564 564 125

SIDH (This Work)
C/ASM 97 216 90 564 564 125

C/ASM 178 376 183 726 726 160

library is compiled with Linaro GCC v4.9.4 on
a single core 1.1GHz ARM Cortex-A57 running
OpenEmbedded Linux v4.5.0. We are following the
same strategy in [41] and [38] as comparing per-
formance of standalone cryptographic operations
with other post-quantum cryptosystem candidates
on our targeted platform. Table 7 demonstrates the
overall comparison of different post-quantum cryp-
tosystems. In this table, Alice0 shows Alice’s key
and message generation operations; Bob denotes
Bob’s key and message generation and his shared
key computations; and finally Alice1 represents the
final shared key computations by Alice.

Our optimized software demonstrates the
speedup of up to 5X over the generic C
implementation of SIDH [16] for the same
security level. However, note that the large
number of operations to calculate the isogeny
map between elliptic curves, even inside our
optimized implementation of SIDH, affects the
overall performance of this scheme and makes it
slower compared to its counterparts. However,
significantly smaller key size makes the SIDH key
exchange protocol suitable for the applications
where the communication overhead is a concern.

Moreover, most of the other post-quantum prim-
itives are based on the hardness of lattice problem
on ideal lattices and as it is stated in [41], recent
cryptanalysis efforts show that their underlying
security might be influenced. Nonetheless, RLWE-
based cryptosystems show remarkable results in
terms of performance.

7 CONCLUSION

In this paper, we have presented two optimized
SIDH key exchange implementations for two dif-
ferent quantum security levels on the ARMv8 plat-
forms. Our implementations provided both 125-
bit and 160-bit quantum security. We investigated
different implementation approaches on ARMv8
processors based on its architecture capabilities.
Our field arithmetic library computes field-level
SIDH operations faster than all other prior imple-
mentations on ARM platforms found in the litera-
ture. We introduced a new implementation-friendly
prime for higher security level implementation of
SIDH on ARM platforms. Moreover, we provided
a comprehensive comparison between affine and
projective SIDH formulas based on inversion-to-
multiplication ratio, and concluded that the opti-
mized projective SIDH always shows better per-
formance compared to optimized affine SIDH on
ARMv8 platforms.

We integrated our optimized software into open
quantum safe OpenSSL project to compare its over-
all performance with other post-quantum cryptog-
raphy primitives. Our benchmarked results demon-
strate that although SIDH key exchange protocol
shows slower timings compared to RLWE-based
primitive, its significantly smaller key size makes
this scheme suitable for the applications where the
communication bandwidth is restricted.

We remark that since isogeny-based cryptosys-
tems are younger than other post-quantum cryp-
tography candidates, their performance and secu-
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rity are still required to be studied widely. Nev-
ertheless, the key size and performance of our
software demonstrate the strong potential of SIDH
as a quantum-resistant key exchange candidate. We
hope that this work would be a paradigm shift
towards motivating more investigation in this area.
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