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Abstract. In AsiaCrypt 2017, Galbraith-Petit-Silva proposed a digital
signature scheme based on the problem of computing the endomorphism
ring of a supersingular elliptic curve. This problem is more standard
than that of the De Feo-Jao-Plût SIDH scheme, since it lacks the auxil-
iary points which lead to the adaptive active attack of Galbraith-Petit-
Shani-Ti. The GPS signature scheme applies the Fiat-Shamir or Unruh
transformation to the raw identification protocol obtained from the endo-
morphism ring problem, and makes use of the Kohel-Lauter-Petit-Tignol
quaternion isogeny path algorithm to find a new ideal. However, the
GPS signature scheme is not very practical. In this paper, we take a first
step towards quantifying the efficiency of the GPS signature scheme. We
propose some improvements in the underlying algorithms for the GPS
scheme, along with a new method which trades off key size for signature
size to decrease the signature size from around 11 kilobytes to 1 kilobyte
at the 128-bit security level by using multi-bit challenges. We also pro-
vide a concrete implementation of the GPS signature scheme using Sage
and CoCalc.

Keywords: post-quantum, digital signature, supersingular isogeny, en-
domorphism ring

1 Introduction

Supersingular isogeny cryptosystems have emerged as a promising post-quantum
system with the introduction of the Supersingular Isogeny Diffie-Hellman scheme
of Jao and De Feo [12]. Although SIDH is believed to resist attacks from quan-
tum computers, it relies on a variation of the standard isogeny-finding hard
problem of Charles et al. [3] which involves sending auxiliary point information
that enables an adaptive active attack [9], which can recover a static secret key
⋆ Corresponding author email: xuxiu2017@gmail.com



bit by bit over many protocol runs. By contrast, the problem of computing the
endomorphism ring of a supersingular curve is known to be equivalent to the
standard isogeny-finding problem on supersingular isogeny graphs [7].

In the realm of digital signatures, a signature scheme based on the SIDH
problem can be obtained by applying the either Fiat-Shamir or Unruh transfor-
mation to the zero-knowledge proof of identity proposed in [8]. Such a scheme
was proposed by Galbraith et al. [10] and Yoo et al. [20] independently. In ad-
dition, [10] also proposes a second signature scheme which requires only the
hardness of computing endomoprhism rings of a supersingular elliptic curve,
which we call the GPS scheme after the authors of [10]. Although [10] provides
concrete parameter sizes and key lengths for the 128-bit security level, as well as
asymptotic runtime estimates, no concrete implementation results are reported,
and we are not aware of any available published implementation of the GPS
scheme for real parameter sets of cryptographic size.

Our Contributions.

1. We provide the first published description of a concrete implementation of
the GPS scheme in Sage, albeit for parameter sizes which fall short of cryp-
tographic size. Our efforts indicate that the main bottleneck in GPS is likely
to be the process of translation from the new ideal generated by the Kohel
et al. algorithm [14] to a new isogeny, which involves constructing torsion
points over large extension fields at a relatively great cost.

2. We propose a new strategy for computing the aforementioned new isogeny
by taking advantage of the fact that all supersingular curves can be defined
over Fp2 , in order to renormalize the codomain of each component isogeny
in the chain, which helps control the growth of the extension field degree.
Our new isogeny chain is structured as follows:

E0/Fp2
ϕ1−−−→
⟨P1⟩

E′
1/Fpd1

f1−→ E1/Fp2
ϕ2−−−−−−−→

⟨f1·ϕ1(P1)⟩
E′

2/Fpd2

f2−→ E2/Fp2 → . . .

3. We propose an optimization of GPS using multi-bit challenges at the expense
of large public keys, based on a new assumption involving the forking lemma.
This answers an open problem that was posed in [6] concerning how to obtain
a similar tradeoff between public key size and signature size as in SeaSign for
the SIDH setting. Our variant is secure under the random oracle model, and
reduces GPS signature sizes to 1 kilobyte, close to that of SeaSign. The time
cost is reduced as well, since we run λ/ log s parallel computations instead
of λ, where log s is the challenge size in bits and λ is the security parameter.
Our construction uses a modified quaternion isogeny path algorithm whose
starting point can be any maximal order (not only the special order O0),
which is of independent interest.

4. We also consider some improvements in the algorithms for translating be-
tween isogeny and ideal, including point halving, fast discrete logarithm and
Minkowski basis computation.



Related Work. Stolbunov [17] and Couveignes [5] presented initial versions of
identification protocols and sketches of a signature scheme based on isogenies.
They did not give a secure solution for how to represent the ideal bka

−1 in
the case where the value of the challenge bit is bk = 1, without leaking the
private key. SeaSign [6] utilizes the idea of rejection sampling in exactly the way
proposed by Lyubashevsky [15] to solve this problem. In addition, [6] sketches
an approach to use multi-bit challenges, trading off challenge size for public key
size. Large public keys can be easily stored in some settings, such as software
signing and license checks, so this tradeoff is worthwhile in some cases.

Outline. The rest of this paper is organised as follows. Section 2 gives basic
notation for isogenies and endomorphism rings, related assumptions, and the
description of the identification scheme. Section 3 describes the new signature
scheme we propose, with multiple challenge bits, and explains its efficiency and
security. Section 4 describes our implementation of the original algorithms in the
GPS signature scheme. Finally Section 5 presents our conclusions.

2 Preliminaries

2.1 Isogeny and Endomorphism Ring

An isogeny is a rational map from one curve E0 to another curve E1, mapping
the infinite point of E0 to the infinite point of E1. An isogeny is group homomor-
phism, and (if separable) uniquely determined up to isomorphism by its kernel.
An endomorphism is an isogeny from an elliptic curve to itself. The endomor-
phisms of an elliptic curve form a ring under pointwise addition and composition.
For a non-constant separable isogeny, its degree is exactly the order of its ker-
nel subgroup. Every isogeny ϕ : E0 → E1 has a dual isogeny ϕ̂ : E1 → E0 such
that ϕ̂ϕ = [deg ϕ]. From a computational point of view, the general method to
compute an isogeny is to use Vélu’s formulas [19].

Over a finite field, an ordinary elliptic curve E0 is one whose endomorphism
ring End(E0) is isomorphic to an order in an imaginary quadratic field Q(π),
and a supersingular elliptic curve is one whose endomorphism ring is isomorphic
to a maximal order in the quaternion algebra Bp,∞ ramified at p and ∞. Such
an algebra can be represented as Bp,∞ = Q⟨i, j⟩ with i2 = −1, j2 = −p, k =
ij = −ji. Every supersingular elliptic curve is isomorphic to a curve defined over
Fp2 for some p. Conjugation, reduced trace, reduced norm, and the bilinear form
associated to the reduced norm are defined as follows:

1. α = a+ bi+ cj + dk → ᾱ = a− bi− cj − dk, where a, b, c, d ∈ Q.
2. Trd(α) = α+ ᾱ = 2a.
3. Nrd(α) = αᾱ = a2 + b2 + pc2 + pd2.
4. ⟨x, y⟩ = Nrd(x+ y)−Nrd(x)−Nrd(y).

An ideal I in Bp,∞ is a Z-lattice of rank 4 and an order O is not only an ideal
but also a ring. The left order of an ideal I is defined as O(I) = {h ∈ Bp,∞ |



hI ⊂ I}, and I is called a left O-ideal. If I is a left O-ideal, then IĪ = NO and
I = ON + Oα where N is the norm of the ideal and N | Nrd(α). We say two
left O-ideals I1 and I2 are in the same equivalence class if I1 = I2q for some
q ∈ B∗

p,∞. Two orders O1 and O2 are of the same order type if αO1α
−1 = O2

for α ∈ B∗
p,∞.

The Deuring correspondence states that there is a bijection from j-invariants
of supersingular curves to maximal orders in the quaternion algebra Bp,∞. For
the supersingular curve E0 : y2 = x3 + x over Fp2 where p ≡ 3 (mod 4), the en-
domorphism ring of E0 is isomorphic to the maximal order O0 = ⟨1, i, 1+k

2 , i+j
2 ⟩,

and there is an isomorphism of quaternion algebras θ : Bp,∞ → End(E0) ⊗ Q
sending (1, i, j, k) to (1, ϕ, π, πϕ) where π is the Frobenius endomorphism map-
ping (x, y) to (xp, yp) and ϕ : (x, y)→ (−x, iy).

If we have an isogeny ϕ : E → E′ over Fp2 of degree n, then we can construct a
left End(E)-ideal I = Hom(E′, E)ϕ of norm n. Conversely, in order to construct
an isogeny from a left End(E)-ideal I, we define E[I] =

⋂
α∈I ker(α). Then

there is an associated isogeny ϕI : E → E/E[I]. If (n, p) = 1, then E[I] = {P ∈
E(Fp2) : α(P ) =∞ for all α ∈ I}.

2.2 Hard Problems
For more information on hard problems related to isogenies, see [7, 10, 11].
Problem 1 Given two supersingular curves E,E′ defined over Fp2 , find an
isogeny ϕ : E → E′.

This problem is the most general problem related to finding isogenies. The
fastest known algorithm for finding isogenies between supersingular curves in
general takes O(

√
p log2 p) [3]. It can be viewed as a graph navigation problem

on a Ramanujan graph.
In SIDH, we choose a prime of the form p = ℓeAA ℓeBB · f ± 1 where ℓA and

ℓB are small primes and f is a cofactor. We fix a supersingular elliptic curve E
defined over Fp2 . Furthermore, E[ℓeAA ] = Z/ℓeAA Z⊕Z/ℓeAA Z = ⟨PA, QA⟩, E[ℓeBB ] =
Z/ℓeBB Z⊕ Z/ℓeBB Z = ⟨PB , QB⟩.
Problem 2 Let ϕA : E → EA be an isogeny with its kernel ⟨RA⟩ where RA is a
point of order ℓeAA . Given EA, ϕA(PB), ϕA(QB), find a generator of ⟨RA⟩.

This is the computational supersingular isogeny (CSSI) problem upon which
SIDH relies [8]. It can be reduced to a claw finding problem. Its classical and
quantum complexities are O(p1/4) and O(p1/6), respectively. Recently, the van
Oorschot-Wiener (vOW) golden collision finding algorithm [1, 4] was argued to
be the most efficient quantum algorithm for CSSI.
Problem 3 Given a supersingular curve E defined over Fp2 , determine the
endomorphism ring of E.

For some special curves, the endomorphism rings are easy to compute, but
for an arbitrary supersingular curve, finding its endomorphism ring is hard. The
best quantum algorithm still runs in exponential complexity [13]. Problems 1
and 3 are known to be equivalent [7, 10].



2.3 Identification Protocol Based on Endomorphism Ring

We briefly describe the Galbraith-Petit-Silva [10] identification protocol.

1. The public key is (E0, E1), and the private key is an isogeny ϕ : E0 → E1.
2. The prover chooses a random walk of degree L from E1 in the graph, arriving

at a curve E2 with ψ : E1 → E2. The prover sends E2 to the verifier.
3. The verifier randomly chooses a challenge bit b and sends b to the prover.
4. If b = 0, the prover answers ψ. If b = 1, the prover publishes a new isogeny
η : E0 → E2, where η ̸= ψϕ .

5. The verifier accepts the proof if the answer is indeed an isogeny betweem E1

and E2 or between E0 and E2.

The GPS signature scheme uses four key algorithms in the process of com-
puting a new path η: loading the isogeny chains, translating from an isogeny to
an quaternion ideal, finding a new path (using the quaternion isogeny path algo-
rithm) and translating from the new ideal back to an isogeny. The reason that a
new path η is published instead of the original isogeny ψϕ is that publishing ψϕ
might reveal information about the secret ϕ. In order to produce a new path to
avoid the leakage of the secret key, the quaternion isogeny path algorithm [14]
is used.

Definition 1. A signature Π=(KeyGen, Sign, Verify) is said to be existentially
unforgeable under adaptive chosen-message attacks if for all probabilistic poly-
nomial time adversaries A with access to the oracle O,∣∣∣∣∣∣Pr

 (PK,SK)← KeyGen(1λ);σi ← O(mi) for 1 ≤ i ≤ k;
(m,σ)← A(PK,mi, σi) :

Verify(m,σ) = 1 and m ̸= mi

∣∣∣∣∣∣ ≤ negl(λ).

Theorem 1 ([10]). If the identification is non-trival and recoverable, then the
signature derived from this identification using the Fiat-Shamir transform is
secure against chosen-message attacks in the random oracle model.

2.4 Quaternion Isogeny Path Algorithm

The quaternion isogeny path algorithm from Kohel et al. [14] plays an important
role in finding a new ideal that corresponds to another isogeny path between two
curves. [10] used the power-smooth version of the quaternion ℓ-isogeny algorithm
to compute another path from E0 to E2 in the quaternion algebra. The new path
is independent of E1 and corresponds to an ideal J .

We recall the quaternion isogeny path algorithm briefly, adopting the no-
tations in [10]. The inputs are a special maximal order O0 in the quaternion
algebra Bp,∞ and a corresponding left O0 ideal I given by a Z-basis of elements
in O0. This is equivalent to inputting two maximal orders O0 and O1, as the
right order O1 of I is the set {h ∈ Bp,∞ | Ih ⊂ I}. The algorithm aims to find
a new ideal J such that J = Iq for some q ∈ B∗

p,∞. Here are the main steps of
the process:



1. Find I ′ such that I ′ has a prime norm N and I ′ = Iq.
2. Choose α ∈ I ′ such that gcd(Nrd(α), N2) = N , so that I ′ = O0N +O0α.
3. Set a bound s = 7

2 log p, and odd integers S1 > p log p and S2 > p3 log p.
4. Find a, b, c, d ∈ Z such that NS1 = a2 + b2 + p(c2 + d2). Then set β1 =
a+ bi+ cj + dk of norm NS1.

5. Find β2 ∈ Zj + Zk such that β1β2 = α mod NO1, and set β2 = Cj +Dk.
6. Find β′

2 of norm S2 such that β′
2 − λβ ∈ NO0 for some λ ∈ Z.

7. Return J = I ′β1β′
2/N .

We see that the norm of the new ideal J is S =
Nrd(I′) Nrd(β1β

′
2)

N2 = S1S2 with
logS ≈ 7

2 log p, and an improvement in [16] reduces its norm to 5
2 log p. The

large norm of the new ideal is the root of the difficulty in implementing GPS
signatures. We remark that implementing the quaternion isogeny path algorithm
is of independent interest separating from the GPS signature scheme—it breaks
the quaternion order analog of the CGL hash function [3], and also can be used
to compute the j-invariant corresponding to a quaternion order. We also note
here that the quaternion isogeny path algorithm in [10] is just suitable for the
case that the input quaternion order is O0. However, we believe that it will also
work for any other input quaternion after a little modification to the step 4 of
the above algorithm which is also of independent interest. So in the following,
we still call it the quaternion isogeny path algorithm even the input is not the
special order O0.

3 Digital Signature Based on Endomorphism Ring

3.1 Modified Identification Protocol
We propose a modified identification protocol based on that of Section 2.3, using
multi-bit challenges.

Phase 1 (done once)

Perform random walks ϕi from E0 to EA,i, where i ∈ {0, 1, ..., s− 1}.

Phase 2 (repeated t = λ
log s

times)

1. The prover sends the verifier a random walk w from E0 to some curve EB .
2. The verifier responds with b ∈ {0, 1, ..., s− 1}.
3. The prover computes a dual isogeny ϕ̂b and with the quaternion isogeny path
algorithm, produces a path w′

b between EA,b and EB . The prover sends w′
b to

the verifier.
4. The verifier accepts the proof if the answer is really an isogeny from EA,b to EB .

Fig. 1: The multiple bit version of the identification protocol.

We give a brief analysis of the properties of the above protocol. It is obvious
that this identification is non-trivial and recoverable.



Completeness. Just follow the procedure in Figure 1 and the verifier accepts
the proof.

Soundness. Suppose we are given transcripts (CMT, c,d,RSP1,RSP2), where
CMT = EB . For two different challenges c and d, we can compute two
isogenies w′

c : EA,c → EB and w′
d : EA,d → EB . Then we can obtain an

isogeny ŵ′
dw

′
c from EA,c to EA,d, which is a solution to Problem 4 that we

propose in the following section.
Zero-knowledge. This simulator is almost identical as the one for the classi-

cal graph isomorphism. If the verifier is dishonest, we can remove these
rounds from the simulator transcript. The distributions of the transcript
(CMT, c,RSP) are indistinguishable from the real one. The data revealed in
step 3 is an isogeny produced by the quaternion isogeny path algorithm and
this algorithm leaks no information about the input isogeny.

3.2 Proposed Digital Signature Scheme

In [10] it is proved that that any 2-special sound identification scheme can be
transformed into a non-trivial scheme by running t sessions in parallel, where
t ≥ λ/c with security parameter λ and challenge bit length c. Hence, one of
the main reasons that this kind of signature scheme is of low efficiency is that
the signature has to run t times. Using the multi-bit challenge approach, the
resulting signatures gain higher efficiency and a smaller size. Algorithms 1, 2,
and 3 present the resulting signature scheme using the Fiat-Shamir transform
in the classical case.

Public Parameters. A security parameter λ and a prime p of the form
4 · ℓ1 · · · ℓn − 1 where ℓi is a small prime. The prime p satisfies p ≡ 3 mod 4.
Small fixed parameters B,S1, S2, where B = 2(1 + ϵ) log p, ϵ > 0, Sk =

∏
i ℓ

ek,i

k,i ,

ℓ
ek,i

k,i < B, gcd(S1, S2) = 1 and
∏

i

(
2
√

ℓk,i

ℓk,i+1

)ek,i

< (p1+ϵ)−1. A supersingular

curve E0/Fp2 : y2 = x3+x, and a cryptographic hash function H with at least λ
bits of output. Suppose that the length of the challenge is log s, i.e. t = λ/ log s.

Algorithm 1 KeyGen(λ)
1: Perform s random isogeny walks ϕm of degree S1 from E0 to curves EA,m with

j-invariant jA,m, where m ∈ {0, 1, ..., s− 1}.
2: Compute the ideal IA,m corresponding to each isogeny.
3: Compute OA,m = End(EA,m).
4: pk ← (jA,0, jA,1, .., jA,s−1).
5: sk ← (IA,0, IA,1, ..., IA,s−1) or (OA,0,OA,1, ...,OA,s−1).
6: return (pk, sk).

Since we set the challenge bit to be log s, we compute s isogenies during the
generation of the public and secret keys. This key generation procedure can be



Algorithm 2 Sign(sk,m)
1: for i = 1 to t do
2: Perform a random isogeny walk wi of degree S2 from E0 to EB,i with j-invariant

jB,i, and compute the corresponding ideal IB,i.
3: Compute the hash value h = H(m, jB,1, jB,2, .., jB,t) and set h ← b1||b2||...||bt,

where bi ∈ {0, 1, ..., s− 1}.
4: end for
5: for i = 1 to t do
6: Compute the dual isogeny ϕ̂bi and the corresponding ideal I−1

A,bi
.

7: On input I−1
A,bi

IB,i and OA,bi , perform the modified quaternion isogeny path
algorithm to produce a new ideal Ji between OA,bi and OB,i. Then translate Ji

to an isogeny w′
i between jA,bi and jB,i.

8: Set zi ← w′
i.

9: end for
10: The signature is σ = (h, z1, z2, ..., zt).

Algorithm 3 Verify(pk,m, σ)
for i = 1 to t do

Use zi to compute the image curve jB,i from jA,bi .
end for
Then compute h′ ← H(m, jB,1, jB,2, ..., jB,t).
if h′ = h then

return 1.
end if

performed in advance. Although the public and secret keys can be generated
offline, the number s cannot be too large, or else large storage will be needed.
An illustration of how to generate the key pairs is presented in Figure 2. The
path can be represented by the isogeny between two j-invariants of curves or the
ideal connecting two endomorphism rings. By taking B = 2(1 + ϵ) log p, we can
guarantee that the output of random walks is uniformly distributed as proved
in [10].

During the Sign step, the commitments of our scheme are different from those
in [10]. We perform the isogeny from j0 to jB but not from jA to jB . As the
number of jA’s is s, there would be s · t isogenies to be computed which costs
too much. So we use instead the path from j0 to jB . In this case additional dual
isogenies and the inverse of ideals have to be computed, but it is not hard to
do that. As for the zi’s, since an isogeny can be determined by its kernel point
and the Montgomery curve has a special structure in P1, each zi can be set as
the x-coordinate of Ri where kerw′

i = ⟨Ri⟩. For the i-th round, we clarify in
Figure 3 how to find a new path Ji.

Efficiency. We provide a rough estimate for the parameters and efficiency for
our version of the signature scheme. For classical security, we choose log p = 2λ.
For λ bits of security, we set t = λ/ log s. The uniform distribution of random



jA,0

· · ·

j0 jA,m

· · ·

jA,s−1

ϕ0(or IA,0)

ϕm(or IA,m)

ϕs−1(or IA,s−1)

Fig. 2: Illustration of KeyGen.

j0 jA,bi

jB,i

ϕbi(or IA,bi)

ϕ̂bi(or I−1
A,bi

)

IB,i Ji

Fig. 3: Find one new path for the i-th par-
allel round.

walk output requires that the output walk has length 2(1+ ε) log p ≈ 4λ in GPS
signatures, and the public keys are 6λ bits. Hence, in our multi-bit signature, if
s isogeny walks are computed, then the size of the private key and public key
increases by a factor of s. The average size of our signature is λ + λ

log s (2(1 +

ε) log p) ≈ 4
log sλ

2. We mention that the verification of GPS signature and ours
both have a cost about O(λ4) bit operations, but not O(λ6) bit operations as
stated in [10]. We only require λ/ log s calls to the four key algorithms in the
GPS scheme, which reduces the overall cost by a factor of log s. An asymptotic
comparison between GPS signatures and ours is listed in Table 1, and a concrete
comparison in Table 2 using log s = 8. By contrast, the shorter signature version
of Seasign [6] uses log s = 16. If we also take log s = 16, the signature size will
be halved, but the size of private and public key will be quite large.

Table 1: Comparison about Galbraith-Petit-Silva endomorphism ring signature
[10] with ours in key size and cost. “ log s” is the challenge bit and it is a positive
integer.

Scheme Private Key Public key Signature size Sign cost Verify cost

GPS17 [10] 4λ 6λ 11
2
λ2 O(λ6) O(λ4)

Ours 4sλ 4sλ 4
log s

λ2 O(λ6) O(λ4)

Security. Recall that the signature is accepted if and only if for every step, the
prover can find a path that leads to a curve with the correct j-invariant. To
ensure that the scheme is secure, the probability of each potential j must be
nearly uniformly likely to be the j-invariant of the resulting curve. The random



Table 2: A concrete efficiency comparison at the security level of 128 bits and
we choose our challenge bit log s = 8. These sizes are all counted in bytes. We
list the performance of the shorter signature version of SeaSign [6].

Scheme Private Key Public key Signature size

GPS17 [10] 64 96 11264

SeaSign[6] 16 4032 · 103 944

Ours 16384 16384 1024

walk theorem proven in [10] states that for every j-invariant j̃ we have

|Pr[j = j̃]− 1

Np
| ≤

r∏
i=1

(
2
√
ℓi

ℓi + 1

)ei

,

where Np is the number of all supersingular j-invariants over Fp2 . In order to
make the isogeny path random, the right-hand term of the above formula should
be smaller than (p1+ϵ)−1 for any positive ϵ. We guarantee this in our parameters
by using B = 2(1 + ϵ) log p.

The single-bit version of the GPS signature scheme has been proved to be
secure in the random oracle model under a chosen message attack in Theorem
10 of [10], if Problem 1 is computationally hard. For the multi-bit version, the
signature derived from the non-trivial canonical recoverable identification still
works. But we can also consider the security reduction from another perspective.
We treat this signature with multi-bit challenges as a kind of multi-signature,
but in the case that the only one signer has multiple public keys signing one
message. This idea is inspired by the smaller signature version of SeaSign.

We recall the forking lemma from Bellare and Neven [2].
Lemma 1. Fix an integer q ≥ 1. Let A be a randomized algorithm that takes
input h1, . . . , hq ∈ {0, 1}t and outputs (J, σ) where J is an integer 1 ≤ J ≤ q with
probability γ. The forking algorithm proceeds as follows: h1, . . . , hq are chosen
randomly in {0, 1}t. A(h1, . . . , hq) outputs (J, σ) with J ≥ 1. Then randomly
choose h′J , . . . , h

′
q ∈ {0, 1}t. A(h1, . . . , hJ−1, h

′
J , . . . , h

′
q) outputs (J ′, σ′). Then

the probability that J = J ′ and h′J ̸= hJ is larger than γ(γq −
1
2t ).

Note that by the forking lemma, there are two signatures for some bk ̸= b′k. Hence
we can get two paths J ′

k and Jk to jBk
from jA,b′k

and jA,bk , respectively. So
(J ′

k)
−1Jk is the path from jA,bk to jA,b′k

. Therefore, we propose a new assumption
for our multi-bit signature scheme.

Problem 4 Given {jA,0, .., jA,s−1}, produced by performing s random isogeny
walks of degree ℓe from E0 with j-invariant j0, compute an ideal I corresponding
to an isogeny EA,m → EA,m′ with j-invariants jA,m and jA,m′ for m ̸= m′.

This problem can be easily reduced to Problem 3. If Problem 3 is solved, then we
can compute the endomorphism rings OA,m and OA,m′ corresponding to jA,m



and jA,m′ , respectively. Then we compute an ideal I which is a left OA,m-ideal
and its right order is isomorphic to OA,m′ for m ̸= m′. The quaternion isogeny
path algorithm will now work to find an isogeny path between curves EA,m and
EA,m′ . The main reduction is given in Algorithm 9 in [7].

Theorem 2. If Problem 4 is computationally hard, then our multi-bit challenge
signatures are existentially unforgeable under chosen-message attacks in the ran-
dom oracle model.

Proof (sketch). Suppose there is a probabilistic polynomial time adversary A
against the signature. Then the public key is known to A, and A can query the
hash function H and the signing oracle Osign. Suppose the adversary A can make
at most q hash oracle queries and n signing oracle queries. In order to simulate
the random oracles, A should maintain the hash list LH and the signature list
Lsign corresponding to the queries and answers of the H-oracle and Osign.

Querying H-oracle with (m, j1, . . . , jt): If there exists (m, j1, . . . , jt, h) ∈ LH

then return h. Otherwise, A randomly chooses h, returns h and records
(m, j1, . . . , jt, h) in LH .

Querying Osign with message m: The simulator chooses random bit-string
b1, . . . , bt ∈ {0, 1, . . . , s − 1}. For i = 1, . . . , t, the simulator computes a
random isogeny walk zi from E0 to EB,i. We update the hash list that
H(m, jB,1, . . . , jB,t) = b1 . . . bt, unless the random oralce has already been
defined on this input in which case the simulation fails. Then return and
record (b1 . . . bt, z1, . . . , zt) in the list Lsign. This simulation fails at a negli-
gible probability according to the above random walk theorem. Hence, the
output is a valid signature and is indistinguishable from the real signature.

We consider the case that when the adversary replays the same tape, one of
the hash queries is answered with a different binary string. With non-negligible
probability A outputs a forgery (b′1 . . . b

′
t, z

′
1, . . . , z

′
t) for the same message m

and the same (m, jB,1, . . . , jB,t) to H with a output b′1 . . . b′t. Without loss of
generality, we assume that bk ̸= b′k. Then the isogeny paths zk from OA,k to
OB,k and z′k from OA,k′ to OB,k′ with OB,k = OB,k′ are such that (z′k)

−1zk is a
solution to Problem 4.

4 Analysis and Implementation of Galbraith-Petit-Silva
Signature

Parameters. We first choose an odd and power-smooth number n =
∏r

i=1 ℓi
such that p = 4n − 1 is a prime. These ℓi are selected as distinct odd primes;
a straightforward way is to choose n as the product of the first few primes. For
example, we take n = 3 × 5 × 7 and then p = 419 is prime. Table 3 shows the
primes that we adopt, where the notion [a, b] means all primes in the range [a, b]
and [a, b]+ [c] means all primes [a, b] along with c. The global curve E0 is chosen



Table 3: The choice of the global parameters.

n Notation log2 p

3× 5× 7 [3, 10] 8.711

3× 5× · · · × 19 [3,20] 24.210

3× 5× · · · × 43× 97 [3, 43] + [97] 61.138

3× 5× · · · × 113 [3, 113] 155.469

3× 5× · · · × 373× 587 [3, 373] + [587] 510.668

as y2 = x3 + x over Fp2 with the initial j-invariant 1728 and the endomorphism
ring O0 = ⟨1, i, i+j

2 , 1+k
2 ⟩.

There are four main algorithms invovled in the signature scheme, including
loading isogenies, translating the isogeny to the ideal, finding a new ideal, and
translating the new ideal to the isogeny. The loading isogenies algorithm inherits
the strategy of SIDH to run in a sequential manner. To be precise, suppose that
the degree of an isogeny is

∏r
i=1 ℓ

ei
i ; then we split it into ei successive ℓi-isogenies

for every i.

Minkowski Basis Computation. Up to dimension four basis, Minkowski is ar-
guably optimal compared to all other known reductions, since it can reach all
the so-called successive minima. Given a basis {v1, v2, . . . , vn}, vi must have a
norm smaller or equal to vi +

∑n
j=1,j ̸=i ajvj for any combinations of integers aj

in the Minkowski-reduced basis. In the quaternion algebra setting, we focus on
the n = 4 case. We set i = 1 for illustration purposes here. Denote by vij the
j-th coordinate of the vector vi. We have

||v1 + a2v2 + a3v3 + a4v4|| =
4∑

j=1

sj(v1j + a2v2j + a3v3j + a4v4j)
2

where s1 = s2 = 1 and s3 = s4 = p. In the quaternion algebra, the inner
product of two elements v1 + v2i + v3j + v4k and w1 + w2i + w3j + w4k is
v1w1 + v2w2 + pv3w3 + pv4w4. Then for each k = 2, 3, 4 we have

d

dak
||v1 + a2v2 + a3v3 + a4v4|| =

4∑
j=1

2vkjsj(v1j + a2v2j + a3v3j + a4v4j)

= 2(vk · v1 + a2vk · v2 + a3vk · v3 + a4vk · v4).

When a2, a3, a4 are the numbers that give the minimal possible norm, we have

v2 · v1

v3 · v1

v4 · v1

+ a2

v2 · v2

v3 · v2

v4 · v2

+ a3

v2 · v3

v3 · v3

v4 · v3

+ a4

v2 · v4

v3 · v4

v4 · v4

 =

0
0
0

 .



This can be solved asa2a3
a4

 = −

v2 · v2 v2 · v3 v2 · v4

v3 · v2 v3 · v3 v3 · v4

v4 · v2 v4 · v3 v4 · v4

−1 v2 · v1

v3 · v1

v4 · v1

 .

The resulting a2, a3, a4 might not be integers and we can replace them by the
nearest integers. After finding the optimal v1 + a2v2 + a3v3 + a4v4, we replace
v1 with this expression and repeat this procedure for all i = 1, 2, 3, 4. This
Minkowski method manages to bring N down to p0.5+o(1) in the finding new
path algorithm.

Improvements for Isogeny-to-Ideal. First we recall the runtime analysis of this
algorithm given by Galbraith-Petit-Silva. This algorithm finds a point Qi of
order ℓeii that generates the kernel of ϕi by considering the kernel polynomial
ψi of the ℓeii -isogeny which takes a total of ℓeii steps. The next step is to find
αi ∈ I satisfying αiQi =∞, where I is the ideal generated in the previous step.
The algorithm identifies the basis β1, β2, β3, β4 of I and tries a random solution
to α = ωβ1 + xβ2 + yβ3 + zβ4 by setting ω, x, y randomly to see if there is a z
satisfying this condition. The new ideal is the set as Ii−1ℓ

ei
i +O0αi. This involves

an average of ℓeii tries to find the suitable α and computing αQi takes O(log2 p)
bit operations.

Next, the algorithm needs to perform point halving due to the fact that the
coefficient of elements in the associated ideal can be non-integer, with denomi-
nator at most 2. Nevertheless, the original algorithm chooses points that have
odd order N . For each a we have a

2 ≡ a(N+1
2 ) mod N and so for each point P

of order N we have a
2P ≡ a(

N+1
2 )P . Thus we save the cost of point halving.

The main improvement comes from the step of finding ω, x, y, z satisfying
(ωβ1 + xβ2 + yβ3 + zβ4)Qi =∞. We can break down the ℓeii tries into solving a
modular ℓi equivalence for ei times. When at step j, we want α(ℓeii )Qi =∞, or
in other words ω(ℓei−j

i )P1 + x(ℓei−j
i )P2 + y(ℓei−j

i )P3 + z(ℓei−j
i )P4 = ∞, where

Pi = βiQi for i = {1, 2, 3, 4}. The procedure goes as follows at each step j:

1. Set S = ω(ℓei−j
i )P1 + x(ℓei−j

i )P2 + y(ℓei−j
i )P3 + z(ℓei−j

i )P4. Notice that S
has order either 1 or ℓi. This is true if j = 1, and for j > 1 it follows from
the loop invariant that we had ω(ℓei−j+1

i )P1+x(ℓ
ei−j+1
i )P2+y(ℓ

ei−j+1
i )P3+

z(ℓei−j+1
i )P4 =∞ from the previous step.

2. Choose ω′, x′, y′ randomly from {0, 1, . . . , ℓi}. In the case of j = 1, care must
be taken so that not all ω′, x′, y′ are divisible by ℓi.

3. Consider the point T = S+ω′(ℓei−1
i )P1 +x′(ℓei−1

i )P2 + y′(ℓei−1
i )P3, and see

whether T and (ℓei−1
i P4) are linearly dependent in the ℓi torsion space. If

so, solve for T + z′(ℓei−1
i )P4 =∞. Otherwise, repeat the loop.

4. Now that S+ω′(ℓei−1
i )P1+x

′(ℓei−1
i )P2+ y

′(ℓei−1
i )P3+ z

′(ℓei−1
i )P4 =∞, we

update ω = ω+ω′(ℓj−1
i ), x = x+x′(ℓj−1

i ), y = y+y′(ℓj−1
i ), z = z+ z′(ℓj−1

i ).
This update gives ω(ℓei−j

i )P1 + x(ℓei−j
i )P2 + y(ℓei−j

i )P3 + z(ℓei−j
i )P4 =∞.



Improvements for Ideal-to-Isogeny. If we just translate the original ideal with
a small norm, but not the newly-generated ideal from the quaternion isogeny
path algorithm, Algorithm 2 in [10] can work out the correct isogeny path. But
if we want to translate the new ideal with a large norm, we have to modify some
steps. For example, if we take the prime p = 4 ·3 ·5 ·7−1, we can produce a new
ideal with norm 32 · 52 · 72 · 112 · 132 · 17 · 19 · 23. If we then want to translate this
new ideal back to an isogeny, we first have to compute bases for the 32, . . . , 23
torsion. However, all of these torsion points are no longer defined on Fp2 , but
over large extension fields.

We discuss the details and complexities of the ideal-to-isogeny algorithm
that involves constructing torsion subgroups and their associated finite field
extensions. Recall that the ideal J returned by the quaternion isogeny path
algorithm has a norm of S which may be divisible by prime powers. Write the
norm of ideal J as n =

r∏
i=1

ℓeii . In order to construct the isogeny ϕ corresponding

to J , we must construct a point Pi for each prime power dividing n. Then a
generator of the kernel of ϕ is the point

∑r
i=1 Pi ∈ E0(F). The required torsion

subgroups fall into two main types:

1. ℓeii | p+ 1,

2. ℓeii ∤ p+ 1.

For the type 1, torsion subgroups will exist in E0(Fp2). For the other type
of prime powers we will need to work over some extension field Fpd for d ∈ N.
We now examine how to determine d explicitly in this type. Fix ℓe = ℓeii for
simplicity. The x-coordinates of the ℓe-torsion points are the roots of the division
polynomial ψℓe(x). While this polynomial has degree ℓ2e−1

2 for odd ℓ and is
guaranteed to split over an extension of that degree, the minimal extension we
are required to work over may be smaller. We determine the extension degree d
as follows: factor ψℓe(x) over Fp and set d0 to be the lowest common multiple
(LCM) of the degrees of each factor.

For the type 2, we still have two cases to discuss. One case can be d = 2d0 if
ℓ2e | #E0(Fp2d0 ). This is due to the fact that the y-coordinates are required to
solve y2 = x3 + x and therefore should be defined over a quadratic extension of
the field containing x. For the other case, we set d = 4d0through experimental
observation.

Once the extension d is determined for E0[ℓ
e], we turn to solving for the

kernel point P ∈ E0[ℓ
e]. The procedure is to find a basis for E0[ℓ

e], and then
solve for P (see [10, §4.4]).

The final step is to determine the isogeny with kernel ⟨
∑r

i=1 Pi⟩ ⊂ E0(Fp).
Suppose each point Pi is defined over an extension of degree di, 1 ≤ i ≤ r. If
we naively add all the points Pi together then we would end up in an extension
of degree LCM{di : 1 ≤ i ≤ r}. Instead we propose a new method which only
requires arithmetic in an extension of degree max{di : 1 ≤ i ≤ r}, using the fact
that all supersingular elliptic curves have j-invariants in Fp2 .

For each 1 ≤ i ≤ r:



Table 4: The performance of these main algorithms in Galbraith-Petit-Silva sig-
nature [10]. “LI” represents loading the isogeny chains. “Is-to-Id” means trans-
lation from an isogeny to an ideal. “Id-to-Is” means translation from an ideal
to an isogeny and this ideal is not the newly-generated one by the quaternion
isogeny path algorithm, but just the ideal after “Is-to-Id”. “New-Path” means
the quaternion isogeny path algorithm. These times are listed in seconds.

n log2 p LI Is-to-Id Id-to-Is New-Path

[3, 10] 8.711 0.100 0.0734 0.064 0.109

[3, 20] 24.210 0.217 0.2146 0.366 0.190

[3, 43] + [97] 61.138 1.000 1.356 0.883 0.492

[3, 113] 155.469 6.356 9.442 6.989 2.297

[3, 373] + [587] 510.668 174.917 126.520 173.020 45.270

1. construct the isogeny ϕi : Ei−1 → E′
i with kernel ⟨Pi⟩,

2. compute the j-invariant ji = j(E′
i),

3. construct the elliptic curve Ei with j-invariant ji and coefficients in Fp2 ,
4. construct the isomorphism fi : E

′
i → Ei,

5. set Pi+1 ← fi(ϕi(Pi)).

Performance. We implemented the main algorithms from the GPS signature
scheme using Sage [18] and ran it on the cloud platform CoCalc for demonstrative
purposes. We choose five values of n that make p prime. The results are listed
in Table 4. It should be pointed out that translation from the new ideal to an
isogeny is not included in this table, as we were not able to run it to completion.

When we attempt to implement translation from the new ideal to an isogeny,
we have to generate these new large torsion points. First, we find the smallest
extension fields containing these points. For example, when p = 4 · 3 · 5 · 7 − 1,
the new ideal produced by the quaternion isogeny path algorithm has a norm of
32 · 52 · 72 · 112 · 132 · 17 · 19 · 23. All these torsion points are not so large, except
for the 132-torsion point. The smallest extension field containing the 132-torsion
points is Fp156 , too big for Sage to manage in this computation, despite the fact
that these torsion points can be precomputed in advance. We emphasize that
the security level of this p is only 8.711 bits, which is obviously well short of
cryptographic size. When we set p = 4 · 3 · 5 · 7 · 11 · 13 · 17 − 1, the new ideal
norm will be 32 · 52 · 72 · 112 · 132 · 172 · 192 · 232 · 29 · 31 · 37 · 41 · 43 · 53 · 59. The
largest extension in this case is determind by the 232-torsion points. We tested
it using Magma and found that the smallest extension degree needs to be Fp1012

in this case, which will be very expensive.

5 Conclusion

Our efforts to implement GPS signatures indicate that the scheme is impractical
for parameters of cryptographic size. Translation from the new ideal to a new



Table 5: Torsion generation in translation from the new ideal to an isogeny. This
is the case of p = 4 · 3 · 5 · 7 − 1. “i-th torsion” means the order of the torsion
point we compute. “Extension field” means the smallest field that the torsion
point is defined over. “Time” is counted by seconds.

i-th torsion Extension field Time

32 Fp12 0.1452

52 Fp20 0.2517

72 Fp28 0.4287

112 Fp88 1.5817

132 Fp156 125.6406

17 Fp32 0.4609

19 Fp4 0.0584

23 Fp44 1.5015

29 Fp28 0.3422

isogeny is not as easy as indicated in the Ideal-to-Isogeny algorithm in [10].
Particular care needs to be taken to control the explosion of extension field
degree in the computation of the torsion points. In addition, we also propose
a variant signature scheme with multi-bit challenges that has smaller signature
sizes and lower computational cost, at the expense of a large public key, but even
ignoring the extra costs of our modified quaternion isogeny path algorithm, the
scheme is still impractical even with these improvements unless all the necessary
torsion points are precomputed in advance. Further efforts are still needed to
make signatures based on endomorphism ring more viable at useful parameter
sizes.
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