Fundamentals of Cryptography

David Jao

Topics in Quantum-Safe Cryptography

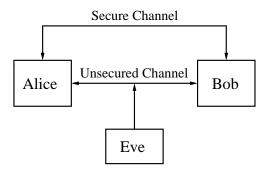
UNIVERSITY OF

June 30, 2016

CENTRE FOR APPLIED CRYPTOGRAPHIC RESEARCH (CACR)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Part VIII


Public-key cryptography

CENTRE FOR APPLIED CRYPTOGRAPHIC RESEARCH (CACR)

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

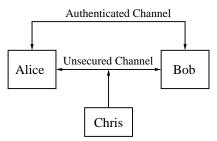
Drawbacks with symmetric-key cryptography

Symmetric-key cryptography: Communicating parties a priori share some secret information.

CRYPTOGRAPHIC RESEARCH (CA イロト イポト イヨト イヨト

э

Given a group G and an element $g \in G$, two parties can establish a shared secret over a public channel by:


- choosing (respectively) secret integers α and β
- sending (respectively) g^{α} and g^{β}
- computing (respectively) $g^{lphaeta} = (g^{lpha})^{eta}$ and $(g^{eta})^{lpha}$

The security of Diffie-Hellman is based on the computational infeasibility of discrete logarithms:

• Given g and g^{α} , find α (modulo the order of g)

Public-key cryptography

Public-key cryptography: Communicating parties a priori share some authenticated (but non-secret) information.

Invented by Ralph Merkle, Whitfield Diffie, and Martin Hellman in 1976. (And in 1970 by researchers at GCHQ.....)

3

Public-key vs. symmetric-key

Advantages of public-key cryptography:

- ► No requirement for a secret channel.
- Each user has only 1 key pair, which simplifies key management.
- Facilitates the provision of non-repudiation services (with digital signatures).

Disadvantages of public-key cryptography:

- Public keys are typically larger than symmetric keys.
- Public-key schemes are slower than their symmetric-key counterparts.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ シタペ

Definition of public-key cryptography

Definition: A public-key cryptosystem consists of:

- ▶ *M* the plaintext space,
- C the ciphertext space,
- ► K_{pubkey} the space of public keys,
- K_{privkey} the space of private keys,
- A randomized algorithm G: {1^ℓ : ℓ ∈ N} → K_{pubkey} × K_{privkey}, called a key-generation function,
- An *encryption* algorithm $\mathcal{E}: K_{\text{pubkey}} \times M \to C$,
- A *decryption* algorithm $\mathcal{D} \colon K_{\text{privkey}} \times C \to M$.

Correctness requirement: For a given key pair $(k_{pubkey}, k_{privkey})$ produced by \mathcal{G} ,

$$\mathcal{D}(k_{\mathsf{privkey}}, \mathcal{E}(k_{\mathsf{pubkey}}, m)) = m$$

for all $m \in M$.

CENTRE FOR APPLIED CRYPTOGRAPHIC RESEARCH (CACR)

The RSA encryption scheme

- Ron Rivest, Adi Shamir, and Leonard Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Communications of the ACM 21 (2): pp. 120–126, 1978.
- Also invented by Clifford Cocks in 1973 (GCHQ).
- Key generation:
 - Choose random primes p and q with $\log_2 p \approx \log_2 q \approx 2^{\ell/2}$.
 - Compute n = pq and $\phi(n) = (p-1)(q-1)$.
 - Choose an integer e with $1 < e < \phi(n)$ and $gcd(e, \phi(n)) = 1$.
 - Compute d = e⁻¹ mod φ(n). The public key is (n, e) and the private key is (n, d).
- Message space:

 $M = C = \mathbb{Z}_n^* = \{m \in \mathbb{Z} : 0 \le m < n \text{ and } \gcd(m, n) = 1\}.$

- Encryption: $\mathcal{E}((n, e), m) = m^e \mod n$.
- Decryption: $\mathcal{D}((n, d), c) = c^d \mod n$.

Recall that for a symmetric-key encryption scheme, security depends on three questions:

- 1. How does the adversary interact with the communicating parties?
- 2. What are the computational powers of the adversary?
- 3. What is the adversary's goal?
- Basic assumption (Kerckhoffs's principle, Shannon's maxim): The adversary knows everything about the algorithm, except the secret key k. (Avoid security by obscurity!!)

The same principles also apply to public-key cryptography.

Definition

A public-key cryptosystem is said to be secure if it is semantically secure against an adaptive chosen-ciphertext attack by a computationally bounded adversary.

- Adaptive chosen-ciphertext attack: The adversary can choose which ciphertexts to query, based on the results of previous queries.
- ▶ RSA with proper random padding (e.g. RSA-OAEP) is secure.

Thought exercise: Why is semantic security against a chosen-plaintext attack a good enough definition for symmetric-key encryption schemes, but not for public-key cryptosystems?

Part IX

Digital signatures

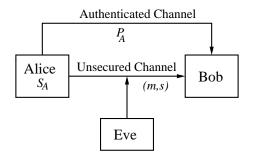
CENTRE FOR APPLIED CRYPTOGRAPHIC RESEARCH (CACR)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Definition of digital signatures

Definition: A digital signature scheme consists of:

- ▶ *M* the plaintext space,
- ▶ *S* the signature space,
- ► K_{pubkey} the space of public keys,
- ► K_{privkey} the space of private keys,
- A randomized algorithm G: {1^ℓ : ℓ ∈ N} → K_{pubkey} × K_{privkey}, called a key-generation function,
- A signing algorithm $\mathcal{S} \colon K_{\mathsf{privkey}} \times M \to S$,
- A verification algorithm $\mathcal{V} \colon K_{\text{pubkey}} \times M \times S \to \{\text{true}, \text{false}\}.$


Correctness requirement: For a given key pair $(k_{\text{pubkey}}, k_{\text{privkey}})$ produced by \mathcal{G} ,

$$\mathcal{V}(k_{\mathsf{pubkey}}, m, \mathcal{S}(k_{\mathsf{privkey}}, m)) = \mathsf{true}$$

for all $m \in M$.

CENTRE FOR APPLIED CRYPTOGRAPHIC RESEARCH (CACR)

Digital signatures

- ► To sign a message *m*, Alice does:
 - 1. Compute $s = \text{Sign}(S_A, m)$.
 - 2. Send *m* and *s* to Bob.
- ► To verify Alice's signature *s* on *m*, Bob does:
 - 1. Obtain an authentic copy of Alice's public key P_A .
 - 2. Accept if $Verify(P_A, m, s) = Accept$.

CENTRE FOR APPLIED CRYPTOGRAPHIC RESEARCH (CACR)

Goals of a digital signature scheme:

- Authenticate the origin of a message.
- Guarantee the *integrity* of a message.
- Basic security requirements:
 - It should be infeasible to deduce the private key from the public key.
 - It should be infeasible to generate valid signatures without the private key.

Ron Rivest, Adi Shamir, and Leonard Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Communications of the ACM **21** (2): pp. 120–126, 1978.

Key generation: Each entity A does the following:

- 1. Randomly select 2 large distinct primes *p* and *q* of the same bitlength.
- 2. Compute n = pq and $\phi(n) = (p-1)(q-1)$.
- 3. Select arbitrary e, $1 < e < \phi(n)$, such that $gcd(e, \phi(n)) = 1$.
- 4. Compute d, $1 < d < \phi(n)$, such that $ed \equiv 1 \pmod{\phi(n)}$.
- 5. A's public key is (n, e); A's private key is d.

Signature Generation and Verification

Signature generation: To sign a message $m \in M$, A does the following:

- 1. Compute H(m), where $H: M \to \mathbb{Z}_n^*$ is a hash function.
- 2. Compute $s = H(m)^d \mod n$.
- 3. A's signature on *m* is *s*.

Signature verification: To verify A's signature s on m, B does the following:

- 1. Obtain an authentic copy of A's public key (n, e).
- 2. Compute H(m).
- 3. Compute *s^e* mod *n*
- 4. Accept (m, s) if and only if $s^e \mod n = H(m)$.

- 1. Total break: *E* recovers *A*'s private key, or a method for systematically forging *A*'s signatures (i.e., *E* can compute *A*'s signature for arbitrary messages).
- 2. Selective forgery: *E* forges *A*'s signature for a selected subset of messages.
- 3. Existential forgery: *E* forges *A*'s signature for a single message; *E* may not have any control over the content or structure of this message.

Types of attacks *E* can launch:

- 1. Key-only attack: The only information *E* has is *A*'s public key.
- 2. Known-message attack: *E* knows some message/signature pairs.
- 3. Chosen-message attack: *E* has access to a signing oracle which it can use to obtain *A*'s signatures on some messages of its choosing.

Definition: A signature scheme is said to be secure if it is existentially unforgeable by a computationally bounded adversary who launches a chosen-message attack.

Note: The adversary has access to a signing oracle. Its goal is to compute a single valid message/signature pair for any message that was not previously given to the signing oracle.

Cryptographic primitives:

- Elliptic curve cryptography
- Post-quantum cryptography: lattices, codes, isogenies
 Protocols:
 - Key exchange
 - Homomorphic encryption
 - Functional encryption

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()