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Part VIII

Public-key cryptography
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Drawbacks with symmetric-key cryptography

Symmetric-key cryptography: Communicating parties a priori share
some secret information.

Alice Bob

Eve

Secure Channel

Unsecured Channel
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Diffie-Hellman key exchange (1976)

Given a group G and an element g ∈ G , two parties can establish
a shared secret over a public channel by:

I choosing (respectively) secret integers α and β

I sending (respectively) gα and gβ

I computing (respectively) gαβ = (gα)β and (gβ)α

The security of Diffie-Hellman is based on the computational
infeasibility of discrete logarithms:

I Given g and gα, find α (modulo the order of g)
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Public-key cryptography

I Public-key cryptography: Communicating parties a priori share
some authenticated (but non-secret) information.

Alice Bob
Unsecured Channel

Authenticated Channel

Chris

I Invented by Ralph Merkle, Whitfield Diffie, and Martin
Hellman in 1976.
(And in 1970 by researchers at GCHQ.....)
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Public-key vs. symmetric-key

Advantages of public-key cryptography:

I No requirement for a secret channel.

I Each user has only 1 key pair, which simplifies key
management.

I Facilitates the provision of non-repudiation services (with
digital signatures).

Disadvantages of public-key cryptography:

I Public keys are typically larger than symmetric keys.

I Public-key schemes are slower than their symmetric-key
counterparts.



MC 5032, 200 UNIVERSITY AVE. W., WATERLOO, ON, CANADA  N2L 3G1 

David Jao 
Director

CENTRE FOR APPLIED CRYPTOGRAPHIC RESEARCH (CACR)
djao@uwaterloo.ca 
519-888-4567, ext. 32493 | fax 519-725-5441
math.uwaterloo.ca/~djao

Definition of public-key cryptography

Definition: A public-key cryptosystem consists of:

I M – the plaintext space,

I C – the ciphertext space,

I Kpubkey – the space of public keys,

I Kprivkey – the space of private keys,

I A randomized algorithm G : {1` : ` ∈ N} → Kpubkey × Kprivkey,
called a key-generation function,

I An encryption algorithm E : Kpubkey ×M → C ,

I A decryption algorithm D : Kprivkey × C → M.

Correctness requirement: For a given key pair (kpubkey, kprivkey)
produced by G,

D(kprivkey, E(kpubkey,m)) = m

for all m ∈ M.
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The RSA encryption scheme

I Ron Rivest, Adi Shamir, and Leonard Adleman, “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems,”
Communications of the ACM 21 (2): pp. 120–126, 1978.

I Also invented by Clifford Cocks in 1973 (GCHQ).
I Key generation:

I Choose random primes p and q with log2 p ≈ log2 q ≈ 2`/2.
I Compute n = pq and φ(n) = (p − 1)(q − 1).
I Choose an integer e with 1 < e < φ(n) and gcd(e, φ(n)) = 1.
I Compute d = e−1 mod φ(n). The public key is (n, e) and the

private key is (n, d).

I Message space:
M = C = Z∗

n = {m ∈ Z : 0 ≤ m < n and gcd(m, n) = 1}.
I Encryption: E((n, e),m) = me mod n.

I Decryption: D((n, d), c) = cd mod n.
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A framework for security definitions

Recall that for a symmetric-key encryption scheme, security
depends on three questions:

1. How does the adversary interact with the communicating
parties?

2. What are the computational powers of the adversary?

3. What is the adversary’s goal?

I Basic assumption (Kerckhoffs’s principle, Shannon’s maxim):
The adversary knows everything about the algorithm, except
the secret key k . (Avoid security by obscurity!!)

The same principles also apply to public-key cryptography.
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Chosen ciphertext security

Definition
A public-key cryptosystem is said to be secure if it is semantically
secure against an adaptive chosen-ciphertext attack by a
computationally bounded adversary.

I Adaptive chosen-ciphertext attack: The adversary can choose
which ciphertexts to query, based on the results of previous
queries.

I RSA with proper random padding (e.g. RSA-OAEP) is secure.

Thought exercise: Why is semantic security against a
chosen-plaintext attack a good enough definition for symmetric-key
encryption schemes, but not for public-key cryptosystems?
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Part IX

Digital signatures
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Definition of digital signatures

Definition: A digital signature scheme consists of:

I M – the plaintext space,

I S – the signature space,

I Kpubkey – the space of public keys,

I Kprivkey – the space of private keys,

I A randomized algorithm G : {1` : ` ∈ N} → Kpubkey × Kprivkey,
called a key-generation function,

I A signing algorithm S : Kprivkey ×M → S ,

I A verification algorithm V : Kpubkey ×M × S → {true, false}.
Correctness requirement: For a given key pair (kpubkey, kprivkey)
produced by G,

V(kpubkey,m,S(kprivkey,m)) = true

for all m ∈ M.
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Digital signatures

(m,s)
Bob

AS
Alice

AP

Authenticated Channel

Unsecured Channel

Eve

I To sign a message m, Alice does:

1. Compute s = Sign(SA,m).
2. Send m and s to Bob.

I To verify Alice’s signature s on m, Bob does:

1. Obtain an authentic copy of Alice’s public key PA.
2. Accept if Verify(PA,m, s) = Accept.
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Basic security requirements

Goals of a digital signature scheme:

I Authenticate the origin of a message.

I Guarantee the integrity of a message.
I Basic security requirements:

I It should be infeasible to deduce the private key from the
public key.

I It should be infeasible to generate valid signatures without the
private key.
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RSA Signature Scheme

Ron Rivest, Adi Shamir, and Leonard Adleman, “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems,”
Communications of the ACM 21 (2): pp. 120–126, 1978.

Key generation: Each entity A does the following:

1. Randomly select 2 large distinct primes p and q of the same
bitlength.

2. Compute n = pq and φ(n) = (p − 1)(q − 1).

3. Select arbitrary e, 1 < e < φ(n), such that gcd(e, φ(n)) = 1.

4. Compute d , 1 < d < φ(n), such that ed ≡ 1 (mod φ(n)).

5. A’s public key is (n, e); A’s private key is d .
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Signature Generation and Verification

Signature generation: To sign a message m ∈ M, A does the
following:

1. Compute H(m), where H : M → Z∗
n is a hash function.

2. Compute s = H(m)d mod n.

3. A’s signature on m is s.

Signature verification: To verify A’s signature s on m, B does the
following:

1. Obtain an authentic copy of A’s public key (n, e).

2. Compute H(m).

3. Compute se mod n

4. Accept (m, s) if and only if se mod n = H(m).
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Goals of the Adversary

1. Total break: E recovers A’s private key, or a method for
systematically forging A’s signatures (i.e., E can compute A’s
signature for arbitrary messages).

2. Selective forgery: E forges A’s signature for a selected subset
of messages.

3. Existential forgery: E forges A’s signature for a single
message; E may not have any control over the content or
structure of this message.
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Attack Model

Types of attacks E can launch:

1. Key-only attack: The only information E has is A’s public key.

2. Known-message attack: E knows some message/signature
pairs.

3. Chosen-message attack: E has access to a signing oracle
which it can use to obtain A’s signatures on some messages of
its choosing.
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Security Definition

Definition: A signature scheme is said to be secure if it is
existentially unforgeable by a computationally bounded adversary
who launches a chosen-message attack.
Note: The adversary has access to a signing oracle. Its goal is to
compute a single valid message/signature pair for any message
that was not previously given to the signing oracle.
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Further topics

Cryptographic primitives:

I Elliptic curve cryptography

I Post-quantum cryptography: lattices, codes, isogenies

Protocols:

I Key exchange

I Homomorphic encryption

I Functional encryption
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