
Coq cheatsheet
General remarks
• ¬P (“not P”) is equivalent to P → False.

Simple commands
• Proof: Begin proving a theorem.
• reflexivity. Prove a goal of the form a = a.
• contradiction. Prove any goal given two logically

contradictory hypotheses.

– contradiction (H2 H1). Use this if H1 : P and
H2 : ¬P are the two contradictory hypotheses.
Note that the order matters.

– contradiction H. Use this if H is one of the two
contradictory hypotheses. (It doesn’t matter
which one; Coq will search for the other one.)

– contradiction. If you don’t specify either
hypothesis, Coq will search for both.

• contradiction H. Prove any goal if H is False.
• exact H. Prove a goal that matches H exactly.

– exact I. Prove a goal that equals True (the
keyword I in Coq is the proof of True).

• unfold name. Use a definition in the goal.

– To find the name of a definition, use Locate, e.g.
Locate "-". (with the quotes and period)

– unfold name in H. Use a definition in H.

• admit. Assume a goal without finishing its proof.
• Admitted. Assume a theorem without finishing its proof.
• Qed. Finish the proof of a theorem. All goals must be

achieved before you can use Qed.

Manipulating goals
• intros. If your goal is ∀ n, P → Q, introduce a variable

n and a hypothesis P , and change your goal to Q.

– Usually you can start your proofs with intros.

• intro H. Introduce one hypothesis at a time.
• split. Your goal is P ∧Q, and you want to first prove

P , then prove Q.
• left. Your goal is P ∨Q, and you want to prove P .
• right. Your goal is P ∨Q, and you want to prove Q.
• exists x. Your goal is ∃ n, P , and you plan to prove

that the choice n = x satisfies P .
• absurd P. Use this if you think you can complete the

proof by proving a contradiction P ∧ ¬P . You will be
asked to prove ¬P , and then asked to prove P .

– If you think you can prove False directly, use
exfalso instead of absurd False.

• assert P. Replace the current goal with P . After
proving P , it appears as a new hypothesis, and you
return to proving your original goal.

Manipulating equalities
• rewrite H. Given H : a = b, if your goal contains a,

replace a with b in your goal.

– rewrite H at 2. Use this variant if your goal has
more than one occurence of a, and you want to
replace only the second occurrence.

• rewrite <-H. Given H : a = b, if your goal contains b,
replace b with a in your goal.

• rewrite H1 in H2. Given H1 : a = b and another
hypothesis H2 that contains a, replace a with b in H2.

– rewrite <-H1 in H2. Replace b with a in H2.

• replace a with b. If your goal contains a, replace a
with b in your goal.

– If you don’t already have a hypothesis stating
a = b or one stating b = a, you will have to come
back later and prove a = b.

• symmetry. If your goal is a = b, change it to b = a.

• symmetry in H. Change a = b to b = a in a hypothesis.

Coq does have a built-in theorem for the transitive property of
equality (namely, eq_trans), but it’s usually easier just to use
rewrite and replace.

Manipulating hypotheses
• apply H. Given H : P → Q, if your goal is Q, change

your goal to P .

– apply (H x y). You have H : ∀ m n,P → Q, and
you want to use H with m = x and n = y.

• apply H1 in H2. Given H1 : P → Q and H2 : P , change
H2 to Q.

– These can be combined: apply (H1 x H2) in H3.

• destruct H. (Always replaces H.)

– Given H : P ∧Q, replace H with two new
hypotheses P and Q.

– Given H : P ∨Q, replace H first with P (and prove
your goal), and then with Q (and prove your goal
again).

– Given H : ∃ n, P , create a new variable x and
replace H with a new hypothesis stating that P
holds for x.

• case H. (Never replaces H.)

– Given H : P ∨Q and a goal R, replace the goal
with P → R (which you must prove), followed by
Q→ R (which you also must prove).

• If H is False, then destruct H or case H immediately
proves the current goal. (contradiction H also works.)

Creating new hypotheses
The pose proof command allows you to create new hypotheses
out of existing hypotheses and/or previously proved theorems.
• pose proof Theorem. Create a new hypothesis using

the previously proved theorem named Theorem.

– Example: pose proof (eq_refl a) creates a new
hypothesis a = a.

• pose proof (H x). Given H : ∀ m,P , create a new
hypothesis stating that P holds for x.

• pose proof (H1 H2). Given H1 : P → Q and H2 : P ,
create a new hypothesis Q.

These can be combined. For example, suppose we have
x : Z

H1 : ∀ n, n = 1→ n+ 1 = 2
H2 : x = 1
H3 : ∀ n, n+ 1 = 2→ n+ 2 = 3

Then pose proof (H3 x (H1 x H2)) yields H4 : x+ 2 = 3.
(Alternatively, apply (H1 x) in H2 followed by apply (H3 x)
in H2 yields a similar but not identical configuration.)

Law of the excluded middle
If you need to do case analysis on an arbitrary statement P ,
the command pose proof (classic P) produces a new
hypothesis H which states P ∨ ¬P . You can then do case H,
destruct H, etc. as needed.

Example (“Not Not P implies P” a.k.a. NNPP):

Require Export Classical_Prop Utf8.
Notation "x → y" := (x → y) (at level 99).

Theorem NNPP : ∀ P : Prop, ¬¬ P → P.
Proof.

intros.
pose proof (classic P) as H0.
destruct H0.
- exact H0.
- contradiction.

Qed.

(The package Classical_Prop must be loaded in order to use
the law of the excluded middle. This particular theorem
cannot be proved without the law of the excluded middle.)

Braces and Bullets
The proof of NNPP above makes use of bullets, which are an
optional (but very useful) feature to help you organize your
proofs. Bullets (once used) are not merely decorative; if you
use them, Coq keeps track of indentation levels and forces you
to finish one block before beginning another.

For more information about bullets and braces (a related
feature), see http://prl.ccs.neu.edu/blog/2017/02/21/
bullets-are-good-for-your-coq-proofs/.

http://prl.ccs.neu.edu/blog/2017/02/21/bullets-are-good-for-your-coq-proofs/
http://prl.ccs.neu.edu/blog/2017/02/21/bullets-are-good-for-your-coq-proofs/

	General remarks
	Simple commands
	Manipulating goals
	Manipulating equalities
	Manipulating hypotheses
	Creating new hypotheses
	Law of the excluded middle
	Braces and Bullets

