
Part VI

Public-key cryptography

Drawbacks with symmetric-key cryptography

Symmetric-key cryptography: Communicating parties a priori share
some secret information.

Alice Bob

Eve

Secure Channel

Unsecured Channel

Key establishment problem

How do Alice and Bob establish the secret key k?

Method 1: Point-to-point key distribution.
(Alice selects the key and sends it to Bob over a secure channel)

A B
k

secure channel

The secure channel could be:

I A trusted courier.

I A face-to-face meeting in a dark alley, etc.

This is generally not practical for large-scale applications.

Key establishment problem

Method 2: Use a Trusted Third Party T .

I Each user A shares a secret key kAT with T for a
symmetric-key encryption scheme E .

I To establish this key, A must visit T once.

I T serves as a key distribution centre (KDC):

)k(
BTk3. E

 A,B
1. Request

T

BA
)k(

ATk2. E

1. A sends T a request for a key to share with B.
2. T selects a session key k , and encrypts it for A using kAT .
3. T encrypts k for B using kBT .

Key establishment problem

Drawbacks of using a KDC:
I The TTP must be unconditionally trusted.

I Makes it an attractive target.

I Requirement for an on-line TTP.
I Potential bottleneck.
I Critical reliability point.

Non-Repudiation is Impractical

I Non-repudiation: Preventing an entity from denying previous
actions or commitments.

I Denying being the source of a message.

I Symmetric-key techniques can be used to achieve
non-repudiation, but typically requires the services of an
on-line TTP (e.g., use a message authentication code where
each user shares a secret key with the TTP).

Public-key cryptography

I Public-key cryptography: Communicating parties a priori share
some authenticated (but non-secret) information.

Alice Bob
Unsecured Channel

Authenticated Channel

Chris

I Invented by Ralph Merkle, Whitfield Diffie, Martin Hellman in
1975.
(And in 1970 by researchers at GCHQ.....)

Key pair generation for public-key crypto

I Each entity A does the following:

1. Generate a key pair (PA,SA).
2. SA is A’s secret key.
3. PA is A’s public key.

I Security requirement: It should be infeasible for an adversary
to recover SA from PA.

Public-key encryption

BScm
Alice Bob

BP

Authenticated Channel

Unsecured Channel

Eve

I To encrypt a secret message m for Bob, Alice does:

1. Obtain an authentic copy of Bob’s public key PB .
2. Compute c = E (PB ,m); E is the encryption function.
3. Send c to Bob.

I To decrypt c , Bob does:

1. Compute m = D(SB , c); D is the decryption function.

Public-key vs. symmetric-key

Advantages of public-key cryptography:

I No requirement for a secret channel.

I Each user has only 1 key pair, which simplifies key
management.

I Facilitates the provision of non-repudiation services (with
digital signatures).

Disadvantages of public-key cryptography:

I Public keys are typically larger than symmetric keys.

I Public-key schemes are slower than their symmetric-key
counterparts.

Definition of public-key cryptography

Definition: A public-key cryptosystem consists of:

I M – the plaintext space,

I C – the ciphertext space,

I Kpubkey – the space of public keys,

I Kprivkey – the space of private keys,

I A randomized algorithm G : {1` : ` ∈ N} → Kpubkey × Kprivkey,
called a key-generation function,

I An encryption algorithm E : Kpubkey ×M → C ,

I A decryption algorithm D : Kprivkey × C → M.

Correctness requirement: For a given key pair (kpubkey, kprivkey)
produced by G,

D(kprivkey, E(kpubkey,m)) = m

for all m ∈ M.

The RSA encryption scheme

I Ron Rivest, Adi Shamir, and Leonard Adleman, “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems,”
Communications of the ACM 21 (2): pp. 120–126, 1978.

I Also invented by Clifford Cocks in 1973 (GCHQ).
I Key generation:

I Choose random primes p and q with log2 p ≈ log2 q ≈ 2`/2.
I Compute n = pq and φ(n) = (p − 1)(q − 1).
I Choose an integer e with 1 < e < φ(n) and gcd(e, φ(n)) = 1.
I Compute d = e−1 mod φ(n). The public key is (n, e) and the

private key is (n, d).

I Message space:
M = C = Z∗n = {m ∈ Z : 0 ≤ m < n and gcd(m, n) = 1}.

I Encryption: E((n, e),m) = me mod n.

I Decryption: D((n, d), c) = cd mod n.

Modular exponentiation

To calculate me mod n, use the square and multiply algorithm.

Example

I Let n = 851, e = 631, m = 2. Write e = 631 in binary:

631 = 29 + 26 + 25 + 24 + 22 + 21 + 20.

I Compute successive powers of m = 2 modulo n:
2 ≡ 2 (mod 851) 22 ≡ 4 (mod 851)

222 ≡ 16 (mod 851) 223 ≡ 256 (mod 851)

224 ≡ 9 (mod 851) 225 ≡ 81 (mod 851)

226 ≡ 604 (mod 851) 227 ≡ 588 (mod 851)

228 ≡ 238 (mod 851) 229 ≡ 478 (mod 851).

I Multiply:

2631 = 229 · 226 · 225 · 224 · 222 · 221 · 220

≡ 478 · 604 · 81 · 9 · 16 · 4 · 2 ≡ 775 (mod 851).

A framework for security definitions

Recall that for a symmetric-key encryption scheme, security
depends on three questions:

1. How does the adversary interact with the communicating
parties?

2. What are the computational powers of the adversary?

3. What is the adversary’s goal?

I Basic assumption (Kerckhoffs’s principle, Shannon’s maxim):
The adversary knows everything about the algorithm, except
the secret key k . (Avoid security by obscurity!!)

The same principles also apply to public-key cryptography.

1. Adversary’s Interaction

Possible methods of attacks against a public-key cryptosystem:
I Passive attacks:

I Key-only attack: The adversary knows the public key(s).
Equivalent to a chosen-plaintext attack, since we always
assume the adversary knows the public key(s).

I Ciphertext-only attack: The adversary knows a public key and
some ciphertext(s) encrypted under the public key.

I Active attacks:
I Chosen-ciphertext attack: The adversary can choose some

ciphertext(s) and obtain the corresponding plaintext(s).
I Adaptive chosen-ciphertext attack: Same as above, except the

adversary can also choose which ciphertexts to query, based on
the results of previous queries.

3. Adversary’s goal

Possible goals when attacking a public-key cryptosystem:

I Total break: Determine the private key, or determine
information equivalent to the private key.

I Decrypt a given ciphertext: Adversary is given a ciphertext c
and decrypts it (without querying for the decryption of c).

I Decrypt a chosen ciphertext: Adversary chooses a ciphertext c
and decrypts it (without querying for the decryption of c).

I Learn some partial information about a message: Adversary is
given/chooses a ciphertext c and learns some partial
information about the decryption of c (without querying for
the decryption of c).

Chosen ciphertext security

Definition
A public-key cryptosystem is said to be secure if it is semantically
secure against an adaptive chosen-ciphertext attack by a
computationally bounded adversary.

I Adaptive chosen-ciphertext attack: The adversary can choose
which ciphertexts to query, based on the results of previous
queries.

(Im)possibility of semantic security

A deterministic encryption algorithm (such as RSA) cannot yield
semantic security.

I Given a ciphertext c and a public key, choose m at random
and compute c ′ = Epubkey(m).

I If c = c ′ then we know the plaintext was m.

I If c 6= c ′ then we know the plaintext was not m.

I Either way, we have learned information about the plaintext.

Optimal Asymmetric Encryption Padding

I Public key (n, e)

I Private key (n, d)

I k , k0, k1 ∈ N with k + k0 + k1 = log2 n

I Hash function
G : {0, 1}k0 → {0, 1}k+k1

I Hash function
H : {0, 1}k+k1 → {0, 1}k0

I Encryption: To encrypt m ∈ {0, 1}k :
I s ← (m ‖ 0k1)⊕ G (r)
I E(m)← (s ‖ H(s)⊕ r)e mod n.

I Decryption:
I s ‖ t ← cd mod n
I m ‖ 0k1 ← H(s)⊕ t
I Check that H(s)⊕ t ends with 0k1 !
I If so, output D(c) = m; otherwise,

return error.

Part VII

Digital signatures

Definition of public-key cryptography

Recall that a public-key cryptosystem consists of:

I M – the plaintext space,

I C – the ciphertext space,

I Kpubkey – the space of public keys,

I Kprivkey – the space of private keys,

I A randomized algorithm G : {1` : ` ∈ N} → Kpubkey × Kprivkey,
called a key-generation function,

I An encryption algorithm E : Kpubkey ×M → C ,

I A decryption algorithm D : Kprivkey × C → M.

Correctness requirement: For a given key pair (kpubkey, kprivkey)
produced by G,

D(kprivkey, E(kpubkey,m)) = m

for all m ∈ M.

Motivation for digital signatures

I In the definition of a public-key cryptosystem, decryption
must be a left inverse of encryption:

D(kprivkey, E(kpubkey,m)) = m.

I There is no corresponding requirement that decryption be a
right inverse of encryption:

E(kpubkey,D(kprivkey, c))
?
= c .

I In some cases (e.g. plain RSA without padding), decryption is
in fact a right inverse of encryption.

I In other cases (e.g. ElGamal), decryption is not a right inverse
of encryption.

I When decryption is a right inverse of encryption, we get a
useful construction: digital signatures

RSA Signature Scheme

Ron Rivest, Adi Shamir, and Leonard Adleman, “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems,”
Communications of the ACM 21 (2): pp. 120–126, 1978.

Key generation: Same as in RSA encryption.

Signature generation: To sign a message m:

1. Compute s = md mod n.

2. The signature on m is s.

Signature verification: To verify a signature s on a message m:

1. Obtain an authentic copy of the public key (n, e).

2. Compute se mod n

3. Accept (m, s) if and only if se mod n = m.

Definition of digital signatures

Definition: A digital signature scheme consists of:

I M – the plaintext space,

I S – the signature space,

I Kpubkey – the space of public keys,

I Kprivkey – the space of private keys,

I A randomized algorithm G : {1` : ` ∈ N} → Kpubkey × Kprivkey,
called a key-generation function,

I A signing algorithm S : Kprivkey ×M → S ,

I A verification algorithm V : Kpubkey ×M × S → {true, false}.
I A valid signature is one which verifies. An invalid signature is

one which does not verify.

Correctness requirement: For a given key pair (kpubkey, kprivkey)
produced by G,

V(kpubkey,m,S(kprivkey,m)) = true

for all m ∈ M.

Digital signatures

(m,s)
Bob

AS
Alice

AP

Authenticated Channel

Unsecured Channel

Eve

I To sign a message m, Alice does:

1. Compute s = Sign(SA,m).
2. Send m and s to Bob.

I To verify Alice’s signature s on m, Bob does:

1. Obtain an authentic copy of Alice’s public key PA.
2. Accept if Verify(PA,m, s) = Accept.

Basic security requirements

Goals of a digital signature scheme:

I Authenticate the origin of a message.

I Guarantee the integrity of a message.
I Basic security requirements:

I It should be infeasible to deduce the private key from the
public key.

I It should be infeasible to generate valid signatures without the
private key.

Goals of the Adversary

1. Total break: E recovers A’s private key, or a method for
systematically forging A’s signatures (i.e., E can compute A’s
signature for arbitrary messages).

2. Selective forgery: E forges A’s signature for a selected subset
of messages.

3. Existential forgery: E forges A’s signature for a single
message; E may not have any control over the content or
structure of this message.

Attack Model

Types of attacks E can launch:

1. Key-only attack: The only information E has is A’s public key.

2. Known-message attack: E knows some message/signature
pairs.

3. Chosen-message attack: E has access to a signing oracle
which it can use to obtain A’s signatures on some messages of
its choosing.

Security Definition

Definition: A signature scheme is said to be secure if it is
existentially unforgeable by a computationally bounded adversary
who launches a chosen-message attack.
Note: The adversary has access to a signing oracle. Its goal is to
compute a single valid message/signature pair for any message
that was not previously given to the signing oracle.

Existential forgery against RSA

Even if the RSA problem is intractable, the basic RSA scheme is
still insecure. Here is an existential forgery under a key-only attack:

I Select s ∈ Zn with gcd(s, n) = 1.

I Compute se mod n.

I Set m = se mod n.

I Then s is a valid signature for m.

Here is a selective forgery under a chosen message attack. Given
m ∈ Zn with gcd(m, n) = 1:

I Compute m′ = 2e ·m mod n

I Request the signature s ′ of m′

I Compute s = s ′/2 mod n.

I Then s is a valid signature for m.

Full Domain Hash RSA (RSA-FDH)

Let H : {0, 1}∗ → Zn be a hash function.

Key generation: Same as in RSA.

Signature generation: To sign a message m ∈ {0, 1}∗:
1. Compute s = H(m)d mod n.

2. The signature on m is s.

Signature verification: To verify a signature s on a message m:

1. Obtain an authentic copy of the public key (n, e).

2. Compute se mod n

3. Accept (m, s) if and only if se mod n = H(m).

Security of RSA-FDH

Theorem (Bellare & Rogaway, 1996): If the RSA problem is
intractable and H is a random function, then RSA-FDH is a secure
signature scheme.

Note: This theorem does NOT always hold if H is not a random
function!

Part VIII

Side-channel attacks

Cryptography as a black box

Up to this point:

I We have treated cryptography as a black box.

I We assume the attacker can observe and/or manipulate inputs
and outputs.

I We do NOT assume the attacker can view or manipulate
intermediate results.

I We have formal definitions of security, and we can prove
security under reasonable mathematical assumptions.

Problems with the black-box viewpoint

For a cryptographer:

Formal security model + security proof = complete victory

And yet . . .

I In practice, things still get broken.

I Assumptions in the security model often do not hold in reality.

I Attackers always exploit the weakest link. That weak link is
almost never (black-box) crypto.

I In many systems, implementation is the weak link, and it is
what gets attacked.

Overview of side channel attacks

A side-channel attack is some attack that involves observing and/or
manipulating intermediate results in a cryptographic calculation.

How does one observe internal state information?

I Timing information: time how long a computation takes.

I Power consumption: monitor the amount of power used.

I Electromagnetic radiation: monitor the noise leaked by a
hardware circuit.

I Acoustic information: record sound with a microphone.

I Other: cache-miss rate, in-circuit emulators, etc.

How does one manipulate internal state information?

I Fault injection

I Row hammer

Types of side-channel attacks

I Passive attacks: Attacker can manipulate inputs, and observe
intermediate results.

I Active attacks: Attacker can manipulate inputs, and
manipulate intermediate results.

I Fault attacks: Attacker can set input values and/or
intermediate result values to invalid values.

I Physical attacks: Attacker can take apart the hardware, dunk
it in an acid bath, etc.

Simple Power Analysis

Paul Kocher, “Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems”, Crypto ’96.

I Many smart cards contain an RSA private key which is used
to generate RSA signatures to authenticate the card.

I A counterfeiter is not supposed to be able to extract the RSA
private key from the card.

I Suppose the card utilizes some measurable resource, in some
data-dependent way, e.g.:

I Amount of time it takes to perform a signature.
I Amount of power consumed during the signature process, as a

function of time.

I By measuring resource consumption, it is possible to
determine the value of the private key.

Square-and-multiply algorithm

Recall the square-and-multiply algorithm:

Algorithm 1 Algorithm for computing md mod n.

1: if d = 0 then
2: output 1
3: else if d is even then
4: output (m

d
2 mod n)2 mod n

5: else if d is odd then
6: output (m · (md−1 mod n)) mod n

I Suppose that squaring mod n consumes different resources
from (non-squaring) multiplication mod n.

I By measuring resource consumption, one can determine
individual bits in d .

I A similar attack works against the double-and-add

algorithm on elliptic curves.

Attack example

I Suppose d = 26 (in binary: 26 = 110102).

I Then
m26 = (m×((m×(1×m)2)2)2)2

I The computation proceeds from the inside out:

M S M S S M S = M S︸︷︷︸
1

M S︸︷︷︸
1

S︸︷︷︸
0

M︸︷︷︸
1

S︸︷︷︸
0

I Similarly, in elliptic curve cryptography:

26 · P = 2·(P+2·(2·(P+2·(0+P))))

and the order of operations is:

A D A D D A D = A D︸︷︷︸
1

A D︸︷︷︸
1

D︸︷︷︸
0

A︸︷︷︸
1

D︸︷︷︸
0

Obtaining a power trace

Credit: Alexander Petric (http://www.alexander-petric.com/
2011/08/side-channel-attack-measurement-setup-2.html)

I Put the smart card in a card reader.
I Attach a scope to the power supply.

I This step may involve (partially)
disassembling the card reader. Note
however the card itself need not be
taken apart.

I Record the power consumption as a
function of time.

I Make an educated guess as to which
portions of the power trace
correspond to which operations.

http://www.alexander-petric.com/2011/08/side-channel-attack-measurement-setup-2.html
http://www.alexander-petric.com/2011/08/side-channel-attack-measurement-setup-2.html

Measured power traces

Acoustic side-channels

D. Genkin, A. Shamir, and E. Tromer, “RSA Key Extraction via
Low-Bandwidth Acoustic Cryptanalysis,” CRYPTO 2014.

I Audio recordings are a potential source of side-channel
information!

I Using its built-in microphone, a mobile phone placed next to a
laptop can determine a secret key used in a computation on
the laptop.

Acoustic traces

Acoustic traces

Cache-based side-channels

C. Percival, “Cache-missing for fun and profit,”
http://www.daemonology.net/papers/htt.pdf

I A user controlling one core of a multi-core processor can spy
on processes being executed on the other core, using cache hit
rate as a side channel.

If $(BIG COMPANY) hosts their servers on Amazon:

I Buy an account on Amazon.

I Repeat (and/or wait) until your server lands on another CPU
core on the same machine as $(BIG COMPANY)’s servers.

I Steal their keys.

http://www.daemonology.net/papers/htt.pdf

Cache trace

Side-channel attack countermeasures

The basic idea is to make all calculations consume constant
resources independent of the input data. Some options include:

I Unified formulas: Use identical formulas for addition and
doubling, or for squaring and multiplication.

I Dummy operations: Insert extra useless operations to make
the calculation uniform (and discard the result).

I Double and always add: Perform the same operations
independent of data values.

