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Abstract. In recent years there has been much interest in the develop-
ment and the fast computation of bilinear pairings due to their practical
and myriad applications in cryptography. Well known efficient examples
are the Weil and Tate pairings and their variants such as the Eta and
Ate pairings on the Jacobians of (hyper-)elliptic curves. In this paper,
we consider the use of projective coordinates for pairing computations
on genus 2 hyperelliptic curves over prime fields. We generalize Chatter-
jee et. al.’s idea of encapsulating the computation of the line function
with the group operations to genus 2 hyperelliptic curves, and derive
new explicit formulae for the group operations in projective and new
coordinates in the context of pairing computations. When applying the
encapsulated explicit formulae to pairing computations on supersingu-
lar genus 2 curves over prime fields, theoretical analysis shows that our
algorithm is faster than previously best known algorithms whenever a
field inversion is more expensive than about fifteen field multiplications.
We also investigate pairing computations on non-supersingular genus 2
curves over prime fields based on the new formulae, and detail the vari-
ous techniques required for efficient implementation.

Keywords: Genus 2 hyperelliptic curves, Tate pairing, Miller’s algo-
rithm, Projective coordinates, Efficient Implementation.

1 Introduction

Bilinear pairings were first introduced to cryptography by Menezes et. al. [24] and
Frey and Rück [13] as a tool to attack instances of the discrete logarithm problem
(DLP) on (hyper-)elliptic curves. Subsequently, Sakai et. al.’s non-interactive
key distribution scheme [29] and Joux’s tripartite Diffie-Hellman key agreement
protocol [19] provided examples of positive usages of pairings. This use of pairings
has inspired much research devoted to the design of cryptographic protocols
with novel properties and the improvement of existing ones, with some classical
examples being Identity Based Encryption [4] and short signatures [5]. Since
pairing computations are generally the most important and expensive operation
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in any pairing-based cryptosystem, improving the speed of pairing computations
has become an important issue in pairing-based cryptography.

Miller proposed the first algorithm [26] for computing the Weil pairing on
elliptic curves. In practice, the Tate pairing shows better performance than the
Weil pairing and therefore is more widely used. While many important tech-
niques have been proposed to accelerate the computation of the Tate pairing
and its variants on elliptic curves [2, 3, 17], the subject of pairing computations
on hyperelliptic curves is also receiving an increasing amount of attention. Choie
and Lee [7] investigated the implementation of the Tate pairing on supersingular
genus 2 hyperelliptic curves over prime fields. Later on, Ó hÉigeartaigh and Scott
[16] improved the implementation of [7] significantly by using a new variant of
Miller’s algorithm combined with various optimization techniques. Duursma and
Lee [9] presented a closed formula for the Tate pairing computation on a very
special family of supersingular hyperelliptic curves. Barreto et. al. [2] generalized
the results of [9] and proposed the Eta pairing approach for efficiently computing
the Tate pairing on supersingular genus 2 curves over binary fields. In particular,
their algorithm leads to the fastest pairing implementation in the literature. In
[23], Lee et. al. considered the Eta pairing computation on general divisors on
supersingular genus 3 hyperelliptic curves with the form of y2 = x7 − x ± 1.
Recently, the Ate pairing, originally defined for elliptic curves, has been gener-
alized to hyperelliptic curves [14] as well. Although the Eta and Ate pairings
hold the record for speed at the present time, we will focus our attention on the
Tate pairing in this paper. The main reason is that the Tate pairing is uniformly
available across a wide range of hyperelliptic curves and subgroups, whereas the
Eta pairing is only defined for supersingular curves and the Ate pairing, which
is an extension of the Eta pairing to the setting of ordinary curves, incurs a huge
performance penalty in the context of ordinary genus 2 curves [14, Table 6].

Previous work for computing pairings on hyperelliptic curves only considered
using affine coordinates. Motivated by Chatterjee et. al.’s work [6], we address
the efficient implementation of the Tate pairing on genus 2 hyperelliptic curves
over large prime fields in projective coordinates in this contribution. We first
derive new explicit formulae for the group operations for genus 2 hyperellip-
tic curves in projective and new (weighted projective) coordinates, respectively.
Letting I denote a field inversion, M a field multiplication, and S a field squar-
ing, we find in the context of pairing computations that compared to Lange’s
formulae [22], our mixed-addition formulae can save 5M and 3M in projective
and new coordinates, respectively, whereas our doubling formulae can save 2M
in both projective and new coordinates. We then show how to encapsulate the
computation of the line function with the mixed addition and doubling formu-
lae in new coordinates, and how to omit some operations which are cancelled
by the final exponentiation in the encapsulated method. Our encapsulated ex-
plicit formulae can be applied to pairing computations on both supersingular
and non-supersingular genus 2 hyperelliptic curves over prime fields. Finally, we
describe an efficient implementation of the Tate pairing on a non-supersingular
genus 2 hyperelliptic curve with an embedding degree of 2 over prime fields as a
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case study. To our knowledge, this is the first concrete implementation of pairing
computations on non-supersingular genus 2 curves.

This paper is organized as follows. Section 2 gives an overview of the Tate
pairing on hyperelliptic curves and Miller’s algorithm for computing the pair-
ing. In Section 3 we describe new explicit formulae which encapsulate group
operations and line computations for genus 2 curves over prime fields. Section
4 shows how to apply various techniques from the literature to accelerate the
pairing computation on a specific non-supersingular genus 2 curve over prime
fields, analyzes the computational complexity of computing the Tate pairings
and gives implementation results. Finally, Section 5 concludes this contribution.

2 Mathematical Background

2.1 Tate Pairing on Hyperelliptic Curves

Let Fq be a finite field with q elements, and Fq be its algebraic closure. Let C be
a hyperelliptic curve of genus g over Fq, and let JC denote the degree zero divisor
class group of C. We say that a subgroup of the divisor class group JC(Fq) has
embedding degree k if the order n of the subgroup divides qk − 1, but does not
divide qi − 1 for any 0 < i < k. For our purpose, n should be a (large) prime
with n | #JC(Fq) and gcd(n, q) = 1. Let JC(Fqk)[n] be the n-torsion group
and JC(Fqk)/nJC(Fqk) be the quotient group. Then the Tate pairing is a well
defined, non-degenerate, bilinear map [13]:

〈·, ·〉n : JC(Fqk)[n]× JC(Fqk)/nJC(Fqk) → F∗qk/(F∗qk)n,

defined as follows: let D1 ∈ JC(Fqk)[n], with div(fn,D1) = nD1 for some ratio-
nal function fn,D1 ∈ Fqk(C)∗. Let D2 ∈ JC(Fqk)/nJC(Fqk) with supp(D1) ∩
supp(D2) = ∅ (to ensure a non-trivial pairing value). The Tate pairing of two
divisor classes D1 and D2 is then defined as

〈D1, D2〉n = fn,D1(D2) =
∏

P∈C(Fq)

fn,D1(P )ordP (D2).

Note that the Tate pairing as detailed above is only defined up to n-th powers.
One can show that if the function fn,D1 is properly normalized, we only need to
evaluate the rational function fn,D1 at the effective part of the reduced divisor
D2 in order to compute the Tate pairing [3, 14].

In practice, the fact that the Tate pairing is only defined up to n-th power is
usually undesirable, and many pairing-based protocols require a unique pairing
value. Hence one defines the reduced pairing as

〈D1, D2〉(q
k−1)/n

n = fn,D1(D2)(q
k−1)/n ∈ µn ⊂ F∗qk ,

where µn = {u ∈ F∗qk | un = 1} is the group of n-th roots of unity. In the rest of
this paper we will refer to the extra powering required to compute the reduced
pairing as the final exponentiation. Furthermore, we also assume the embedding
degree k is greater than 1.
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2.2 Miller’s Algorithm

The main task involved in the computation of the Tate pairing 〈D1, D2〉n is to
construct a rational function fn,D1 such that div(fn,D1) = nD1. In [26], Miller
described a polynomial time algorithm, known universally as Miller’s algorithm,
to construct the function fn,D1 and compute the Weil pairing on elliptic curves.
However, the algorithm can be easily adapted to compute the Tate pairing on
hyperelliptic curves.

Let GiD1,jD1 ∈ Fqk(C)∗ be a rational function with div(GiD1,jD1) = iD1 +
jD1− (iD1⊕ jD1) where ⊕ is the group law on JC and (iD1⊕ jD1) is reduced.
Miller’s algorithm constructs the rational function fn,D1 based on the following
iterative formula:

fi+j,D1 = fi,D1fj,D1GiD1,jD1 .

Algorithm 1 shows the basic version of Miller’s algorithm for computing the
reduced Tate pairing on hyperelliptic curves according to the above iterative
relation. Essentially, computing the Tate pairing with Miller’s algorithm amounts
to performing a scalar multiplication of a reduced divisor and evaluating certain
intermediate rational functions which appear in the process of the divisor class
addition. A more detailed version of Miller’s algorithm for hyperelliptic curves
can be found in [14].

Algorithm 1 Miller’s Algorithm for Hyperelliptic Curves (basic version)

IN: D1 ∈ JC(Fqk )[n], D2 ∈ JC(Fqk ), represented by D1 and D2

with supp(D1) ∩ supp(D2) = ∅
OUT: 〈D1, D2〉(q

k−1)/n
n

1. f ← 1, T ← D1

2. for i← blog2(n)c − 1 downto 0 do

3. . Compute T ′ and GT,T (x, y) such that T ′ = 2T − div(GT,T )

4. f ← f2 ·GT,T (D2), T ← [2]T

5. if ni = 1 then

6. . Compute T
′

and GT,D1(x, y) such that T
′
= T + D1 − div(GT,D1)

7. f ← f ·GT,D1(D2), T ← T ⊕D1

8. Return f (qk−1)/n

3 Encapsulated Computation on Genus 2 Curves

In this section we generalize the idea of encapsulated add-and-line and encapsu-
lated double-and-line proposed in [6] to genus 2 hyperelliptic curves over large
prime fields. Note that, in the process of computing Tate pairings, one inversion
is required for each divisor class addition and doubling, and the calculation of
the inversion of an element in large characteristic is usually quite expensive.
Therefore, to avoid inversions, we need to derive efficient inversion-free explicit
formulae for genus 2 hyperelliptic curves in the context of pairing computations.
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Lange [22] presented efficient explicit formulae for the group operations on
genus 2 curves using various systems of coordinates. In the projective coor-
dinate system, the quintuple [U1, U0, V1, V0, Z] corresponds to the affine class
[x2 + U1/Zx + U0/Z, V1/Zx + V0/Z] in Mumford representation [28], whereas
the sextuple [U1, U0, V1, V0, Z1, Z2] stands for the affine class [x2 + U1/Z

2
1x +

U0/Z
2
1 , V1/(Z3

1Z2)x+ V0/(Z3
1Z2)] in the new coordinate system. Lange’s formu-

lae are designed to be used in the context of computing scalar multiplications,
and do not explicitly calculate all of the rational functions required in Miller’s
algorithm. However, one can extract the rational functions required from the
formulae in [22] at the cost of 3 extra field multiplications.

Choie and Lee [7] modified Lange’s explicit formulae in affine coordinates to
reduce the cost of extracting the rational functions required in Miller’s algorithm.
The formulae presented in [7] require 1I + 23M + 3S and 1I + 23M + 5S in
Fp for divisor class addition3 and doubling, respectively, thereby saving 2 field
multiplications over the previous method. Ó hÉigeartaigh and Scott [16] further
optimized the doubling formula proposed in [7] for supersingular genus 2 curves
over Fp of the form y2 = x5 + a by saving 1 multiplication and 1 squaring.

Based on the above explicit formulae in affine coordinates, we derive new
explicit mixed-addition and doubling formulae in the projective and new coor-
dinate systems in the context of pairing computations, respectively. Since the
explicit formulae in new coordinates are more efficient than those in projective
coordinates, we use new coordinates to represent divisor classes in the main pre-
sentation. The mixed-addition and doubling formulae in projective coordinates
can be found in the appendix. We will explain how to encapsulate the group op-
erations and the line computations in the following subsections. To increase per-
formance, we also enlarge the set of coordinates to [U1, U0, V1, V0, Z1, Z2, z1, z2]
as in [22], where z1 = Z2

1 and z2 = Z2
2 .

3.1 Encapsulated Divisor Addition and Line Computation

In this subsection, we show how to encapsulate the computation of the line func-
tion with the divisor class addition in new coordinates. Given two divisor classes
E1 = [U11, U10, V11, V10, 1, 1, 1, 1] and E2 = [U21, U20, V21, V20, Z21, Z22, z21, z22]
in new coordinates as inputs, Table 1 describes an explicit mixed-addition for-
mula which calculates a divisor class E3 = [u3(x), v3(x)] and the rational func-
tion l(x) such that E1 +E2 = E3 + div

(
y−l(x)
u3(x)

)
in the most common case. Our

new explicit formula requires 36M +5S for computing the divisor class addition
in new coordinates. Table 2 summarizes the computational cost of calculating
the divisor class addition and extracting the line function in various coordinate
systems. From Table 2 we note that in the context of pairing computations our
mixed-addition formulae can save 5M in the projective coordinate system and
3M in the new coordinate system, respectively, when compared to the formulae
given by Lange [22].
3 We note that the addition formula in [7] requires 3S instead of 2S as claimed. Indeed,

each of Steps 1, 4, and 6 in [7, Table 5] requires a separate squaring.
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Table 1. Mixed-Addition Formula on a Genus 2 Curve over Fp (New Coordinates)

Input Genus 2 HEC C : y2 = x5 + f3x
3 + f2x

2 + f1x + f0

E1 = [U11, U10, V11, V10, 1, 1, 1, 1] and

E2 = [U21, U20, V21, V20, Z21, Z22, z21, z22]

Output E3 = [U31, U30, V31, V30, Z31, Z32, z31, z32] = E1 ⊕ E2

l(x) such that E1 + E2 = E3 + div
“

y−l(x)
u3(x)

”
Step Expression Cost

1 Compute resultant and precomputations: 7M, 1S

z23 = Z21Z22, z24 = z21z23, Ũ11 = U11z21, y1 = Ũ11 − U21

y2 = U20 − U10z21, y3 = U11y1, y4 = y2 + y3, r = y2y4 + y2
1U10

2 Compute almost inverse of u2 mod u1: –

inv1 = y1, inv0 = y4

3 Compute s′: 7M

w0 = V10z24 − V20, w1 = V11z24 − V21, w2 = inv0w0

w3 = inv1w1, s
′
1 = y1w0 + y2w1, s

′
0 = w2 − U10w3

4 Precomputations: 4M, 3S

r̃ = rz23, R = r̃2, Z31 = s′1Z21, Z32 = r̃Z21

z31 = Z2
31, z32 = Z2

32, s̃
′
0 = s′0z21

5 Compute l: 5M

l2 = s′1U21 + s̃′0, l0 = s′0U20 + rV20

l1 = (s′1 + s′0)(U21 + U20)− s′1U21 − s′0U20 + rV21

6 Compute U3: 7M, 1S

w1 = Ũ11 + U21, U31 = s′1(2s̃′0 − s′1y1)− z32, l
′
1 = l1s

′
1

U30 = s̃′0(s
′
0 − 2s′1U11) + s

′2
1 (y3 − Ũ10 − U20) + 2l′1 + Rw1

7 Compute V3: 6M

w1 = l2s
′
1 − U31, V30 = U30w1 − z31(l0s

′
1)

V31 = U31w1 + z31(U30 − l′1)

Sum 36M, 5S

Table 2. Divisor Class Addition in Different Systems and in Odd Characteristic

Reference Coordinate Addition Mixed Extracting Line
Type Addition Function l(x)

Miyamoto et al. [27] Affine 1I, 24M, 2S – no cost
Projective 54M – no cost

Lange [22] Affine 1I, 22M, 3S – 3M
Projective 47M, 4S 40M, 3S 3M

New 47M, 7S 36M, 5S 3M

Choie and Lee [7] Affine 1I, 23M, 3S – no cost

Our work Projective – 38M, 3S no cost
Table 9

New – 36M, 5S no cost
Table 1
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In the new coordinate system, the rational function c(x, y) = y− l(x) that is
required in Miller’s algorithm has the following form:

c(x, y) = y −
(
s′1
rz23

x3 +
l2
rz24

x2 +
l1
rz24

x+
l0
rz24

)
,

where s′1, l2, l1, l0, r, z23 and z24 = z21z23 are computed in Table 1. By defining
the auxiliary rational function c′(x, y) = (rz24)c(x, y), we obtain

c′(x, y) = (rz24)y − ((s′1z21)x
3 + l2x

2 + l1x+ l0).

Note that the result of evaluating the function c(x, y) at an image divisor D2 will
be raised to the power (qk − 1)/n (k > 1) in the last step of Miller’s algorithm.
For efficiency reasons, the first input to the Tate pairing is usually restricted to
the 1-eigenspace of the Frobenius endomorphism on JC [n]. Therefore, we have
the following relation

c(D2)(q
k−1)/n = ((c′(D2)/(rz24))q−1)(q

k−1+qk−2+...+1)/n = c′(D2)(q
k−1)/n.

The above relation means that in new coordinates we can work with the
rational function c′(x, y) instead of c(x, y) without altering the value of the re-
sulting Tate pairing. For the same reason we also work with the rational function
u′3(x) = z31x

2 +U31x+U30 instead of u3(x) = x2 + U31
z31

x+ U30
z31

for both divisor
addition and divisor doubling.

3.2 Encapsulated Divisor Doubling and Line Computation

In this subsection, we describe how to encapsulate the computation of the line
function with the divisor class doubling in new coordinates. Given a divisor class
E1 = [U11, U10, V11, V10, Z11, Z12, z11, z12] in new coordinates as an input, Table 3
describes an explicit doubling formula which calculates a divisor class E3 =
[u3(x), v3(x)] and the rational function l(x) such that 2E1 = E3 + div

(
y−l(x)
u3(x)

)
in the most common case. Our new explicit formula needs 35M + 7S to double
a divisor class in new coordinates. Table 4 summarizes the computational cost
of doubling a divisor class and extracting the line function in various coordinate
systems. From Table 4 we note that in the context of pairing computations our
doubling formulae can save 2M in both projective and new coordinates, when
compared to the formulae given by Lange [22].

In the new coordinate system, the rational function c(x, y) = y− l(x) that is
required in Miller’s algorithm has the following form:

c(x, y) = y −
(

s1
s′1Z32

x3 +
l2

Z31Z32
x2 +

l1
Z31Z32

x+
l0

Z31Z32

)
,

where s1, s′1, l2, l1, l0, Z31 and Z32 are available in Table 3. By defining the aux-
iliary rational function c′(x, y) = (Z31Z32)c(x, y), we obtain

c′(x, y) = (Z31Z32)y − ((s1z11)x3 + l2x
2 + l1x+ l0),
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Table 3. Doubling Formula on a Genus 2 Curve over Fp (New Coordinates)

Input Genus 2 HEC C : y2 = x5 + f3x
3 + f2x

2 + f1x + f0

E1 = [U11, U10, V11, V10, Z11, Z12, z11, z12]

Output E3 = [U31, U30, V31, V30, Z31, Z32, z31, z32] = [2]E1

l(x) such that 2E1 = E3 + div
“

y−l(x)
u3(x)

”
Step Expression Cost

1 Compute resultant: 4M, 2S

w0 = V 2
11, w1 = U2

11, w2 = V10z11

w3 = w2 − U11V11, r = U10w0 + V10w3

2 Compute almost inverse: –

inv′1 = −V11, inv′0 = w3

3 Compute k′: 7M, 1S

z′11 = z2
11, w3 = f3z

′
11 + w1, Ũ10 = U10z11

k′1 = z12(2(w1 − Ũ10) + w3), z
′′
11 = z11z

′
11

k′0 = z12(U11(4Ũ10 − w3) + f2z
′′
11)− w0

4 Compute s′: 5M

w0 = k′0inv′0, w1 = k′1inv′1, s
′
1 = w2k

′
1 − V11k

′
0, s

′
0 = w0 − Ũ10w1

5 Precomputations: 8M, 4S

Z31 = s′1z11, z31 = Z2
31, w0 = rz11, w1 = w0Z12

Z32 = 2w1Z11, z32 = Z2
32, w2 = w2

1, R = rZ31

S0 = s′20 , S = s′0Z31, s0 = s′0s
′
1, s1 = s′1Z31

6 Compute l: 6M

l2 = s1U11 + s0z11, V
′
10 = RV10, l0 = s0U10 + 2V ′

10

V ′
11 = RV11, l1 = (s1 + s0)(U11 + U10)− s1U11 − s0U10 + 2V ′

11

7 Compute U3: 1M

U30 = S0 + 4(V ′
11 + 2w2U11), U31 = 2S − z32

8 Compute V3: 4M

w0 = l2 − U31, w1 = w0U30, w2 = w0U31

V31 = w2 + z31(U30 − l1), V30 = w1 − z31l0
Sum 35M, 7S

Table 4. Divisor Class Doubling in Different Systems and in Odd Characteristic

Reference Coordinate Doubling Extracting Line
Type Function l(x)

Miyamoto et al. [27] Affine 1I, 23M, 4S no cost
Projective 53M no cost

Lange [22] Affine 1I, 22M, 5S 3M
Projective 38M, 6S 3M

New 34M, 7S 3M

Choie and Lee [7] Affine 1I, 23M, 5S no cost

Ó hÉigeartaigh and Scott [16] Affine 1I, 22M, 4S no cost

Our work Projective 39M, 6S no cost
Table 10

New 35M, 7S no cost
Table 3
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where z11 is also available in Table 3. With the same argument as the case
of the mixed-addition, we have the relation c(D2)(q

k−1)/n = c′(D2)(q
k−1)/n for

an image divisor D2. Therefore, we can simply work with the rational function
c′(x, y) instead of c(x, y) without altering the value of the resulting Tate pairing
in the new coordinate system.

4 Implementing the Tate Pairing

4.1 The Non-supersingular Pairing-Friendly Genus 2 Curve

There are only a few techniques that have been proposed for constructing non-
supersingular curves of genus g ≥ 2 and low embedding degree for pairing-based
cryptography — see [10, 11, 18, 21] for example. By modeling on the Cocks-Pinch
method for constructing pairing-friendly elliptic curves [8], Freeman generated
the first examples of non-supersingular pairing-friendly genus 2 curves [11]. In our
implementations, we will use an example from [11], which gives a genus 2 curve
whose Jacobian has embedding degree 2 with respect to the prime n = 2160 + 7.
The curve is given by the equation

C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0

over Fp. The curve coefficients f3, f2, f1 and f0, the subgroup order n, and the
characteristic p of the prime field can be found in Appendix A of [11]. Although
Freeman [11] also provides examples of non-supersingular genus 2 curves with
larger embedding degree, those curves are defined over prime fields with very
large characteristics and therefore are not suitable for efficient implementations.
Generating non-supersingular pairing-friendly genus 2 curves defined over small
prime fields (|p| ≈ 80 bits) with large embedding degree (k ≥ 12) remains an
open problem.

Let c ∈ Fp be a quadratic non-residue over Fp. A quadratic twist of C,
denoted by Ct, over Fp is defined by the following equation

Ct : y2 = x5 + c2f3x
3 + c3f2x

2 + c4f1x+ c5f0.

Let JCt(Fp2) be the Jacobian of Ct when considering Ct as a curve defined over
Fp2 , and Dt = [ut, vt] be an element of JCt

(Fp2) in Mumford representation. It is
known [1] that Ct(Fp2) is isomorphic to C(Fp2). Therefore, we can construct the
isomorphism ψ of Jacobians JCt(Fp2) and JC(Fp2) by applying the isomorphism
φ to each point P = (xt, yt) in the support of the divisor Dt as shown in the
following figure.

ψ: JCt (Fp2 ) −→ JC(Fp2 ) φ: Ct(Fp2 ) −→ C(Fp2 )

Dt 7−→ D (xt, yt) 7−→ (x, y)

[ut, vt] 7−→ [u, v] (xt, yt) 7−→ (c−1xt, c
−5/2yt)

The Isomorphism of JCt (Fp2 ) and JC(Fp2 ) The Isomorphism of Ct(Fp2 ) and C(Fp2 )
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4.2 Finite Field Arithmetic

In our implementation, the curve C has embedding degree k = 2. Therefore we
first need to construct the quadratic extension field Fp2 . Since the prime p in
this paper is congruent to 5 modulo 12, the quadratic extension field Fp2 can be
constructed by the irreducible binomial x2+3. Letting β denote −3, the elements
of the field Fp2 can be represented as a + b

√
β, where a, b ∈ Fp. By using the

Karatsuba multiplication technique [20], a multiplication of two elements in Fp2
costs 3 multiplications in Fp.

4.3 Using Degenerate Divisors and Denominator Elimination

Degenerate divisors have been widely used in the literature to speed up pairing
computations on supersingular hyperelliptic curves [2, 9, 16]. Frey and Lange [12]
have shown that the value of the Tate pairing is non-trivial if one restricts the
second input to the embedding of C(Fqk) into JC(Fqk). In particular, when
the embedding degree k is even, we can use a degenerate divisor class P − P∞ ∈
JC(Fqk) as the second argument of the Tate pairing where the coordinates of P =
(x, y) ∈ C(Fqk) satisfy x ∈ Fqk/2 but y 6∈ Fqk/2 . Therefore, in our implementation
we first generate a degenerate divisor class Dt = [x − xt, yt] ∈ JCt(Fp) on the
twisted curve Ct/Fp. We then use the isomorphism ψ given above to obtain
the degenerate divisor class D = ψ(Dt) = [x − c−1xt, c

−5/2yt] ∈ JC(Fp2) on
the curve C defined over Fp2 . Hence, D can be used as the second argument to
Miller’s algorithm. Note that the first part of D, namely x − c−1xt, is defined
over Fp, and thus the denominator elimination technique [3] applies in this case.

4.4 Evaluating Line Functions

At each iteration of the loop, we extract the rational functions y − l(x) and
u3(x) from the group operations and evaluate these functions at the second
argument D2. When new coordinates are used, we can work with c′(x, y) =
(rz24)y − ((s′1z21)x

3 + l2x
2 + l1x + l0) and u′3(x) = z31x

2 + U31x + U30 for
group addition, and c′(x, y) = (Z31Z32)y − ((s1z11)x3 + l2x

2 + l1x + l0) and
u′3(x) = z31x

2 +U31x+U30 for group doubling as described in Section 3, where
r̃, z11, z21, Z31, Z32, s1, s

′
1, l2, l1 and l0 are from Table 1 and Table 3. We consider

the following two cases for evaluating line functions at the divisor D2:

1. D2 is a degenerate divisor generated by the method in Section 4.3. In this
case, D2 can be represented by [x − x2, y2] ∈ JC(Fp2) for which x2 ∈ Fp
and y2 6∈ Fp. Since x2

2 and x3
2 can be precomputed, this leaves 6M over Fp

to be computed each time the function c′(x, y) is evaluated. In particular,
denominator elimination is applicable in this case and we do not need to
evaluate the function u′3(x) at D2. Therefore, the total cost of evaluating
the rational functions at a degenerate divisor D2 is given as 6M in Fp per
iteration of the loop, with a precomputation of 1M + 1S in Fp.
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2. D2 is a general divisor in Mumford representation, namelyD2 = [u2(x), v2(x)]
= [x2 +u21x+u20, v21x+ v20] ∈ JC(Fp2). Note that the Mumford represen-
tation of divisors essentially gives the symmetric functions of the coordinates
of the points in the support of the divisor. Hence, we can use these symmetric
functions to obtain an explicit formula for evaluating the rational functions
c′(x, y) and u′3(x) at D2, which only uses the coefficients of u2(x) and v2(x).
Table 5 describes the efficient explicit formula for computing c′(D2) and
u′3(D2).

Table 5. Evaluating c′(x, y) and u′3(x) at a General Divisor D2 in New Coordinates

Input c′(x, y) = (r̃z21)y − ((s′1z21)x
3 + l2x

2 + l1x + l0) ∈ Fp[x, y]
u′3(x) = z31x

2 + U31x + U30 ∈ Fp[x]
D2 = [x2 + u21x + u20, v21x + v20] ∈ JC(Fp2)

Output c′(D2), u
′
3(D2) ∈ Fp2

Precomputations Cost

t1 = u20v21, t2 = u21v20, t3 = t1 − t2, t4 = v21t3, t5 = v2
20 13M, 3S

t6 = t4 + t5, t7 = u21v21, t8 = 2v20 − t7, t9 = t1 + t3, t10 = u21t3 in Fp2

t11 = u20v20, t12 = t10 + 2t11, t13 = u2
21, t14 = t3t13, t15 = 2t3 − t2

t16 = u20t15, t17 = t14 − t16, t18 = u20u21, t19 = u2
20, t20 = t19u20

t21 = t19u21, t22 = t13 − 2u20, t23 = u20t22, t24 = t22 − u20, t25 = u21t24

Computing c′(D2) Cost

w1 = r̃z21, w2 = s′1z21, w3 = w1t6, w4 = w2t17, w5 = l2t12, w6 = l1t9 38M, 1S
w7 = l0t8, w8 = w3 − w4 + w5 − w6 − w7, w9 = w1w8, w10 = w2t20 in Fp

w11 = l2t21, w12 = l1t23, w13 = l0t25, w14 = w10 − w11 + w12 − w13

w15 = w2w14, w16 = l2t19, w17 = l1t18, w18 = l0t22, w19 = w16 − w17 + w18

w20 = l2w19, w21 = l1u20, w22 = l0u21, w23 = w21 − w22, w24 = l1w23

w25 = l20, c
′(D2) = w9 + w15 + w20 + w24 + w25

Computing u′3(D2) Cost

i1 = z2
31, i2 = z31U30, i3 = U2

30, i4 = i1t19, i5 = U31u20, i6 = z31t18, i7 = U30u21 13M, 2S
i8 = i5 − i6 − i7, i9 = U31i8, i10 = i2t22, u

′
3(D2) = i3 + i4 + i9 + i10 in Fp

Note that, in many of the multiplications in Table 5, one of the operands
is in Fp. Hence, a multiplication in Fp2 only needs 2M in Fp in this case.
The total cost of evaluating the rational functions at a general divisor D2 is
given as 51M +3S in Fp per iteration of the loop, with a precomputation of
13M + 3S in Fp2 .

4.5 Final Exponentiation

For a genus 2 curve with an embedding degree of k = 2, the output of Miller’s
algorithm must be exponentiated to the power of (p2 − 1)/n. The final expo-
nentiation can be expressed in terms of operations in the base field Fp. Letting
f = a+ b

√
β ∈ Fp2 denote the output of Miller’s algorithm, we can compute the
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final exponentiation as follows:

f
p2−1

n =
(
a− b

√
β

a+ b
√
β

) p+1
n

=

(
a2 − 3b2 +

√
β
(
(a− b)2 − (a2 + b2)

)
a2 + 3b2

) p+1
n

.

We first calculate the expression in the parenthesis with 1I + 2M + 3S in Fp,
followed by an expensive exponentiation by (p + 1)/n which is executed in the
arithmetic in Fp2 .

4.6 Efficiency Comparison and Analysis

Since our encapsulated explicit formulae are applicable to pairing computations
on both supersingular and non-supersingular genus 2 curves, we first show how
our method can be used to improve previous implementations on supersingular
genus 2 curves. We then analyze the case of non-supersingular genus 2 curves.

In [7] and [16], the authors considered the pairing computation on a family
of supersingular genus 2 hyperelliptic curves with embedding degree 4 in affine
coordinates. The curves are defined by the equation y2 = x5 + a, where a ∈
F∗p and p ≡ 2, 3 mod 5. Note that our explicit doubling formulae only need
37M + 6S and 32M + 6S in projective and new coordinates, respectively, for
this family of curves since the curve coefficients f2 and f3 are zero. Assume that
the order n of the subgroup is about 160 bits. Following the same analysis as in
[7] and [16], we compare the cost of computing the Tate pairing on this family
of curves in different coordinate systems (without including the cost of the final
exponentiation) in Table 6.

Table 6. Theoretical Complexity of Miller’s Algorithm in Different Systems

Reference Coordinate Type Subgroup Order Cost

Choie and Lee [7] Affine Random 240I, 17688M, 2163S

Ó hÉigeartaigh and Scott [16] Affine Solinas Prime 162I, 10375M, 645S

Our work Projective Random 20017M, 1201S
Solinas Prime 13129M, 967S

New Random 19297M, 1361S
Solinas Prime 12487M, 971S

We assume that field squarings have cost S = 0.8M . Then our encapsulated
method is faster than that of [7] whenever I/M > 4.03. Moreover, our algorithm
can achieve better performance than that of [16] whenever I/M > 14.65. These
conditions usually hold for large prime field arithmetic on modern processors
[25]. Therefore, for sufficiently large I/M , our method based on the encapsulated
explicit formulae will be superior.

Next, we analyze the computational complexity of computing the Tate pair-
ing using the non-supersingular genus 2 curve with embedding degree 2 (see
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Section 4.1). Note that the group order n = 2160 + 7 = 2160 + 23 − 1 is a Solinas
prime [32]. The encapsulated explicit formulae for performing the group oper-
ations and extracting the rational functions in new coordinates are used (See
Section 3). Furthermore, the degenerate divisor generated by using the tech-
nique in Section 4.3 is used as the second argument to Miller’s algorithm. Based
on these optimizations, the theoretical cost for computing the Tate pairing is
given as (again without including the cost of the final exponentiation)

(log2 n)(TD + Tc + Tsk + Tmk) + 2(TA + Tc + Tmk),

where TA = 36M + 5S is the cost of adding two general divisors and extracting
the rational functions with the formula in Table 1, TD = 35M +7S is the cost of
doubling a general divisor and extracting the rational functions with the formula
in Table 3, Tc = 6M (with a precomputation of 1M + 1S) is cost of evaluating
the rational function c′(x, y) at the degenerate divisor D2, and Tsk = 3S and
Tmk = 3M are respectively the cost of squaring and multiplication in Fp2 . Hence,
the total cost of computing the Tate pairing with our optimizations is given as
7175M + 1621S in Fp, whereas 163I + 4243M + 975S are required when using
affine coordinates.

4.7 Experimental Results

In this section, experimental results are given for computing the Tate pairing
using the techniques detailed in this paper for the non-supersingular genus 2
curve defined over Fp with embedding degree 2. All experiments were conducted
on a Core 2 DuoTMprocessor with a clock frequency of 2.67 GHz. The code was
written in C and complied and debugged using Microsoft Developer Studio 6. The
implementation of Fp-arithmetic is based on various efficient algorithms in [15],
where p is a 651-bit prime. Table 7 shows the timings of our finite field library
and the corresponding IM -ratio. From Table 7, we note that the IM -ratio is
45.8 and S = 0.89M in the target processor. Therefore, using our encapsulated
explicit formulae, we can obtain a 31.5% performance improvement over working
with affine coordinates.

Table 7. Timings of Prime Field Fp Library

# of bits of p Multiplication (M) Squaring (S) Inversion (I) IM -ratio

651 4.59µs 4.08µs 210µs 45.8

Table 8 gives experimental results for the implementation of the Tate pairing
for the (160/1024) security level. All of the timings are given in milliseconds and
three cases are included in the Table. The first case is the time taken to compute
the Tate pairing when a degenerate divisor is used as the second argument to
Miller’s algorithm and the denominator technique is applied. The second case
gives the time when a general divisor with Mumford representation is used as
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the second input to the algorithm. The third case is the timing for computing
the Tate pairing on non-supersingular elliptic curves with embedding degree 2
over Fp given by Scott [31].

Table 8. Experimental Results – (160/1024) Security Level

Case Description Running Time (ms)

1 Evaluating at a degenerate divisor 46.5

2 Evaluating using Mumford Representation 85.2

3 Elliptic curve pairing (k = 2 and log2 p ≈ 512) [31] 8.9

Note that the implementations in [16] and [31] use special assembly language
routines in MIRACL [30] for field operations. Therefore, it is hard to compare our
implementation with those in [16, 31]. The timings in Table 8 indicate that the
Tate pairing on the non-supersingular genus 2 curve over Fp is a valid candidate
for practical applications. However, elliptic curve pairings are faster than those in
the genus 2 case for a (160/1024) bit security level, due to the more complicated
group operations and larger Jacobian sizes of genus 2 curves.

5 Conclusion

In this paper, we have described how to efficiently implement pairing computa-
tions on genus 2 hyperelliptic curves over prime fields in projective coordinates.
We generalize Chatterjee et. al.’s idea of encapsulated double-and-line compu-
tation and add-and-line computation to genus 2 curves in projective and new
coordinates, respectively. We also show that some of the operations in the en-
capsulated method do not need to be computed since they are eliminated by the
final exponentiation. Our new explicit formulae are applicable to pairing compu-
tations on both supersingular and non-supersingular genus 2 curves. Theoretical
analysis shows that for pairing computations on supersingular genus 2 curves
with embedding degree 4 over prime fields, our encapsulated method is faster
than previously best known algorithms whenever I/M > 14.65. Furthermore, we
also report the first efficient implementation of pairing computations on a non-
supersingular genus 2 curve with embedding degree 2 over prime fields using the
encapsulated explicit formulae and various known optimization techniques.
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Appendix: Explicit Formulae for Genus 2 Curves over Fp

In this appendix, we give efficient explicit formulae for group operations on genus
2 curves over Fp in projective coordinates in the context of pairing computations.
Table 9 and Table 10 address the cases of projective coordinates. Given two
divisor classes E1 and E2, Table 9 computes the divisor class E3 = [u3(x), v3(x)]
and the rational function l(x) such that E1 + E2 = E3 + div

(
y−l(x)
u3(x)

)
in the

projective coordinate system, where l(x) = s′1
r x

3 + l2
rZ2

x2 + l1
rZ2

x + l0
rZ2

. For
doubling a reduced divisor class E1, Table 10 calculates the divisor class E3 =
[u3(x), v3(x)] and the rational function l(x) such that 2E1 = E3 + div

(
y−l(x)
u3(x)

)
in projective coordinates, where l(x) = s1

R′x
3 + l2

R′Z1
x2 + l1

R′Z1
x+ l0

R′Z1
.
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Table 9. Mixed-Addition Formula on a Genus 2 curve over Fp (Projective Coordinates)

Input Genus 2 HEC C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0
E1 = [U11, U10, V11, V10, 1] and E2 = [U21, U20, V21, V20, Z2]

Output E3 = [U31, U30, V31, V30, Z3] = E1 ⊕ E2

l(x) such that E1 + E2 = E3 + div
“

y−l(x)
u3(x)

”
Step Expression Cost

1 Compute resultant r = Res(u1, u2): 5M, 1S

Ũ11 = U11Z2, Ũ10 = U10Z2, z1 = Ũ11 − U21, z2 = U20 − Ũ10

z3 = U11z1, z4 = z2 + z3, r = z2z4 + z21U10
2 Compute almost inverse of u2 mod u1: –

inv1 = z1, inv0 = z4
3 Compute s′: 7M

w0 = V10Z2 − V20, w1 = V11Z2 − V21, w2 = inv0w0
w3 = inv1w1, s

′
1 = z1w0 + z2w1, s

′
0 = w2 − U10w3

4 Precomputations: 4M, 1S

R = r2, s̃′0 = s′0Z2, s̃
′
1 = s′1Z2, S = s′1s̃

′
1, r̃ = rs̃′1

5 Compute l: 5M

l2 = s′1U21 + s̃′0, l0 = s′0U20 + rV20
l1 = (s′1 + s′0)(U21 + U20)− s′1U21 − s′0U20 + rV21

6 Compute U3: 8M, 1S

w1 = Ũ11 + U21, U31 = s′1(2s̃
′
0 − s′1z1)− RZ2, l

′
1 = l1s

′
1

U30 = s̃′0(s
′
0 − 2s′1U11) + s

′2
1 (z3 − Ũ10 − U20) + 2l′1 + Rw1

7 Compute V3: 6M

w1 = l2s
′
1 − U31, V30 = U30w1 − S(l0s

′
1), V31 = U31w1 + S(U30 − l′1)

8 Adjust: 3M
Z3 = r̃S, U31 = r̃U31, U30 = r̃U30

Sum 38M, 3S

Table 10. Doubling Formula on a Genus 2 Curve over Fp (Projective Coordinates)

Input Genus 2 HEC C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0
E1 = [U11, U10, V11, V10, Z1]

Output E3 = [U31, U30, V31, V30, Z3] = [2]E1

l(x) such that 2E1 = E3 + div
“

y−l(x)
u3(x)

”
Step Expression Cost

1 Compute resultant and precomputations: 4M, 3S

Z2 = Z2
1 , Ṽ11 = 2V11, Ṽ10 = 2V10, w0 = V 2

11, w1 = U2
11, w2 = Ṽ10Z1

w3 = 4w0, w4 = w2 − U11Ṽ11, r = U10w3 + Ṽ10w4
2 Compute almost inverse: –

inv′1 = −Ṽ11, inv
′
0 = w4

3 Compute k′: 5M

w3 = f3Z2 + w1, w4 = 2U10, w̃4 = w4Z1, k
′
1 = 2w1 + w3 − w̃4

k′0 = U11(2w̃4 − w3) + Z1(f2Z2 − w0)
4 Compute s′: 7M

w0 = k′0inv
′
0, w1 = k′1inv

′
1, s2 = w2k

′
1 − Ṽ11k

′
0

s′1 = s2Z1, s
′
0 = w0 − Z1U10w1

5 Precomputations: 6M, 2S

R = rZ2, R̃ = Rs′1, R
′ = Rs2, S0 = s′20 , S1 = s′21 , S = s′0s

′
1, s0 = s′0s2, s1 = s′1s2

6 Compute l: 6M

l2 = s1U11 + s0Z1, l0 = s0U10 + R′V10
l1 = (s1 + s0)(U11 + U10)− s1U11 − s0U10 + R′V11

7 Compute U3: 4M, 1S

U30 = S0 + R(s2Ṽ11 + 2rZ1U11), U31 = 2S − R2

8 Compute V3: 4M
w1 = l2 − U31, w2 = U30w1, w3 = U31w1
V31 = w3 + S1(U30 − l1), V30 = w2 − S1l0

9 Adjust: 3M

Z3 = S1R̃, U31 = U31R̃, U30 = U30R̃
Sum 39M, 6S


