
Contents

1 Elliptic curve cryptography 3
1.1 Motivation . 3

1.1.1 Groups in cryptography 3
1.1.2 Discrete logarithms . 4

1.2 Definitions . 5
1.2.1 Finite fields . 5
1.2.2 Elliptic curves . 6
1.2.3 Group law . 7
1.2.4 Elliptic curves in characteristic 2 9

1.3 Implementation issues . 9
1.3.1 Scalar multiplication . 10
1.3.2 Curve selection . 11
1.3.3 Point representations . 12
1.3.4 Generating points of prime order 12

1.4 ECC protocols . 12
1.4.1 Public key encryption . 13
1.4.2 Digital signatures . 15
1.4.3 Public key validation . 16

1.5 Pairing based cryptography . 17
1.5.1 Definitions . 17
1.5.2 Pairing-based protocols 19

1.6 Properties of pairings . 21
1.6.1 Embedding degree . 21
1.6.2 MOV reduction . 22
1.6.3 Overview of pairing families 23

1.7 Implementations of pairings . 24
1.7.1 Divisors . 24
1.7.2 Weil pairing . 27
1.7.3 Tate pairing . 30
1.7.4 Miller’s algorithm . 32

1.8 Pairing-friendly curves . 33
1.8.1 Supersingular curves . 33
1.8.2 Ordinary curves . 35

1.9 References and further reading 37

1

2 CONTENTS

Chapter 1

Elliptic curve cryptography

Elliptic curve cryptography, in essence, entails using the group of points on an
elliptic curve as the underlying number system for public key cryptography.
There are two main reasons for using elliptic curves as a basis for public key
cryptosystems. The first reason is that elliptic curve based cryptosystems ap-
pear to provide better security than traditional cryptosystems for a given key
size. One can take advantage of this fact to increase security, or (more often)
to increase performance by reducing the key size while keeping the same se-
curity. The second reason is that the additional structure on an elliptic curve
can be exploited to construct cryptosystems with interesting features which are
difficult or impossible to achieve in any other way. A notable example of this
phenomenon is the development of identity based encryption and the accompa-
nying emergence of pairing-based cryptographic protocols.

1.1 Motivation

Elliptic curves are useful in cryptography because the set of points on an elliptic
curve form a group, and the discrete logarithm problem has been observed to
be very hard on this group. In this section we review the basic facts about
groups and discrete logarithms and explain the relationship between discrete
logarithms and cryptography.

1.1.1 Groups in cryptography

Recall that a group (G, ·) is a set G equipped with a binary operation satisfying
the properties of associativity, existence of identity, and existence of inverses.
Many of the most important cryptographic protocols are based upon groups, or
can be described generically in terms of groups. For example, the Diffie-Hellman
key exchange protocol [19], which was the first public key cryptography protocol
ever published, can be described as follows:

3

4 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

Protocol 1.1.1. [Diffie-Hellman key exchange protocol] Two parties, named
Alice and Bob, wish to establish a common secret key without making use of
any private communication.

• Alice and Bob agree on a group G, and an element g ∈ G.

• Alice selects a secret value α, and sends gα to Bob.

• Bob selects a secret value β, and sends gβ to Alice.

• Alice and Bob compute the shared secret gαβ = (gα)β = (gβ)α.

In Diffie and Hellman’s original publication [19], the group G is specified to
be the multiplicative group Z∗p of nonzero integers modulo p, and the element g is
specified to be a generator of G. However, it is clear from the above description
that the protocol is not limited to this group, and that other groups can also
be used.

1.1.2 Discrete logarithms

We wish to quantitatively measure the extent to which a group G is suitable
for use in cryptographic protocols such as Diffie-Hellman. In order to do this,
we recall the definition of discrete logarithms. Given any two group elements g
and h, the discrete logarithm of h with respect to g, denoted DLOGg(h), is the
smallest non-negative integer x such that gx = h (if it exists). An adversary ca-
pable of computing discrete logarithms in G can easily break the Diffie-Hellman
protocol. Therefore, in order for a group to be useful in Diffie-Hellman or in
public key cryptography, the discrete logarithm problem in the group must be
computationally difficult.

It is known that, in any group G with n elements, the computation of dis-
crete logarithms can be performed probabilistically in expected time at most
O(
√
n), using the Pollard rho algorithm [45]. This figure represents the maxi-

mum amount of security that one can hope for. Most groups, however, fall short
of this theoretical maximum.

For example, consider the multiplicative group Z∗p of nonzero integers modulo
p, or more generally the multiplicative group F∗q of nonzero elements in any
finite field Fq. Using the index calculus algorithm [34], discrete logarithms in
this group can be computed probabilistically in Lq(1/3, (128/9)1/3) expected
time in the worst case, where q is the size of the field. Here Lq(α, c) denotes the
standard expression

Lq(α, c) = exp((c+ o(1))(log q)α(log log q)1−α)

interpolating between quantities polynomial in log q (when α = 0) and expo-
nential in log q (when α = 1). Note that the theoretical optimum of O(

√
n) =

O(
√
q) corresponds to Lq(1, 1/2). Hence, in the multiplicative group of a fi-

nite field, the best known algorithms for computing discrete logarithms run in
substantially faster than exponential time.

1.2. DEFINITIONS 5

Elliptic curves over a finite field are of interest in cryptography because in
most cases there is no known algorithm for computing discrete logarithms on
the group of points of such an elliptic curve in faster than O(

√
n) time. In

other words, elliptic curves are conjectured to attain the theoretical maximum
possible level of security in the public key cryptography setting.

1.2 Definitions

This section contains the basic definitions for elliptic curves and related con-
structions such as the group law.

1.2.1 Finite fields

We briefly review the definition of a field, which plays a crucial role in the the-
ory of elliptic curves. A field is a set equipped with two binary operations,
+ (addition) and · (multiplication), which admit additive and multiplicative
inverses, distinct additive and multiplicative identities, and satisfy the associa-
tive, commutative, and distributive laws. Examples of fields include Q (rational
numbers), R (real numbers), C (complex numbers), and Zp (integers modulo a
prime p).

A finite field is a field with a finite number of elements. Every finite field
has size equal to pm for some prime p. For each pair (p,m), there is exactly
one finite field of size q = pm, up to isomorphism, and we denote this field Fpm

or Fq. (In the literature, the field Fq is often called a Galois field , and denoted
GF(q). In this chapter, however, we will use the Fq notation throughout.)

When q = p is prime, the field Fp is equal to the field Zp of integers modulo
p. When q = pm is a prime power, the field Fpm can be obtained by taking
the set Fp[X] of all polynomials in X with coefficients in Fp, modulo any single
irreducible polynomial of degree m.

Example 1.2.1 (The finite field F9). The polynomial X2 + 1 is irreducible in
F3[X] (does not factor into any product of smaller degree polynomials). The
elements of F9 are given by

F9 = {0, 1, 2, X,X + 1, X + 2, 2X, 2X + 1, 2X + 2}.

Addition and multiplication in F9 are performed modulo 3 and modulo X2 + 1,
e.g.

(X + 1) + (X + 2) = 2X + 3 = 2X

(X + 1) · (X + 2) = X2 +X + 2X + 2 = X2 + 3X + 2

= X2 + 2 = (X2 + 2)− (X2 + 1) = 1

The characteristic of a field F , denoted char(F), is the size of the smallest
subfield in the field, or 0 if this subfield has infinite size. In the case of a finite
field Fpm , the characteristic is always equal to p.

6 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

1.2.2 Elliptic curves

Roughly speaking, an elliptic curve is the set of points over a field satisfying a
cubic equation in two variables x and y. By employing various substitutions,
the general case can be reduced to one in which the y variable has degree 2
and the x variable has degree 3. In addition to the usual points of the form
(x, y), there is an extra point, denoted ∞, which serves as the identity element
in the group. The following is the technical definition of an elliptic curve.
Note that Definition 1.2.2 is only for fields of characteristic not equal to 2; the
characteristic 2 case is treated separately in Definition 1.2.7. Although it is
possible to give a single definition that covers all cases, we have elected to use
separate definitions for reasons of clarity.

Definition 1.2.2 (Elliptic curves in characteristic 6= 2). Let F be a field whose
characteristic is not equal to 2. An elliptic curve E defined over F , denoted E
or E/F , is a set of the form

E = E(F) = {(x, y) ∈ F 2 | y2 = x3 + a2x
2 + a4x+ a6} ∪ {∞},

where a2, a4, a6 are any three elements of F such that the discriminant a2
2a

2
4 −

4a3
4−4a3

2a6 +18a2a4a6−27a2
6 of the polynomial x3 +a2x

2 +a4x+a6 is nonzero.
The points of the form (x, y) are called finite points of E, and the point ∞ is
called the point at infinity.

Essentially, an elliptic curve is the set of points (x, y) lying on a curve
f(x, y) = 0, where f(x, y) = y2 − (x3 + a2x

2 + a4x + a6). This definition is
analogous to the definition of the multiplicative group F ∗ as the set of points
(x, y) satisfying xy = 1. The extra point ∞ is not a point in F 2; instead it
arises from the mathematical point of view when considering E as a curve in
projective space.

The cubic polynomial x3 + a2x
2 + a4x + a6 is called the Weierstrass cubic

of E. The condition that the discriminant is nonzero is equivalent to requiring
that the Weierstrass cubic have three distinct roots over (any algebraic closure
of) F . This condition also ensures that the partial derivatives ∂f

∂x and ∂f
∂y are

never both zero on E. The nonvanishing of partial derivatives, in turn, implies
that every finite point on E has a unique tangent line, a fact which is necessary
in order to define the group law (Definition 1.2.4).

If the characteristic of F is not equal to either 2 or 3, then the substitution
x ← x − a2

3 eliminates the a2 term from the Weierstrass cubic, leaving the
simplified equation y2 = x3 + ax + b. In this case the discriminant of the
Weierstrass cubic is equal to −(4a3 + 27b2).
Example 1.2.3. Consider the elliptic curve E : y2 = x3 + x + 6 defined over
the finite field F11 of 11 elements. The discriminant of the Weierstrass cubic is
−(4 · 13 + 27 · 62) ≡ 3 mod 11, which is nonzero. There are thirteen points on
the elliptic curve E/F11, as follows:

E(F11) = {∞, (2, 4), (2, 7), (3, 5), (3, 6), (5, 2), (5, 9),
(7, 2), (7, 9), (8, 3), (8, 8), (10, 2), (10, 9)}.

1.2. DEFINITIONS 7

One can verify directly that each point lies on E. For example, 92 ≡ 103 + 10 +
6 ≡ 4 mod 11, so (10, 9) is on E.

1.2.3 Group law

We now provide a definition of the group law on an elliptic curve, valid when F
has characteristic not equal to 2. If the characteristic of F is 2, then a different
set of definitions is needed (Sect. 1.2.4).

Definition 1.2.4 (Group law—geometric definition). Let F be a field whose
characteristic is not equal to 2. Let

E : y2 = x3 + a2x
2 + a4x+ a6

be an elliptic curve defined over F . For any two points P and Q in E, the point
P +Q is defined as follows.

• If Q =∞, then P +Q = P .

• If P =∞, then P +Q = Q.

In all other cases, let L be the unique line through the points P and Q. If P = Q,
then let L be the unique tangent line to the curve y2 = x3 + a2x

2 + a4x+ a6 at
P .

• If L does not intersect the curve y2 = x3 + a2x
2 + a4x+ a6 at any point

other than P or Q, then define P +Q =∞.

• Otherwise, the line L intersects the curve y2 = x3 + a2x
2 + a4x + a6 in

exactly one other point R = (x′, y′).

• Define P +Q = (x′,−y′).

Although Definition 1.2.4 is of a geometric nature, using it one can derive
algebraic equations for P + Q in terms of P and Q. In this way, we obtain a
purely algebraic definition of the group law:

Definition 1.2.5 (Group law—algebraic definition). Let F be a field whose
characteristic is not equal to 2. Let

E : y2 = x3 + a2x
2 + a4x+ a6

be an elliptic curve defined over F . For any two points P and Q in E, the point
P +Q is defined as follows.

• If Q =∞, then P +Q = P .

• If P =∞, then P +Q = Q.

8 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

x

y

P

Q

-HP+QL

P+Q

E

Figure 1.1: Illustration of the group law on an elliptic curve E

In all other cases, we can write P = (x1, y1) and Q = (x2, y2). If x1 = x2 and
y1 = −y2, then define P +Q =∞. Otherwise, set

m =

{
y2−y1
x2−x1

if P 6= Q,
3x2

1+2a2x1+a4
2y1

if P = Q.

x3 = m2 − x1 − x2

y3 = −(m(x3 − x1) + y1)

and define P +Q to be the point (x3, y3).

In order to form a group, the addition operation must be associative and
admit an additive identity and additive inverses. From the definition, it is easy
to see that the addition operation is commutative, with identity element∞ and
inverse element −P = (x,−y) for any point P = (x, y). The associativity prop-
erty is much harder to prove. One can show that the operation is associative by
calculating the two quantities (P+Q)+R and P+(Q+R) using Definition 1.2.5
under a computer algebra system, but such a proof is tedious and we therefore
omit the proof here.

Example 1.2.6 (Point addition). Let E : y2 = x3 + x+ 6 be the curve given in

1.3. IMPLEMENTATION ISSUES 9

Example 1.2.3, defined over F11. We have:

(2, 4) + (2, 4) = (5, 9)
(2, 4) + (5, 2) = (2, 7)

((2, 4) + (2, 4)) + (5, 2) = (5, 9) + (5, 2) =∞
(2, 4) + ((2, 4) + (5, 2)) = (2, 4) + (2, 7) =∞

The last two computations illustrate the associativity property.

1.2.4 Elliptic curves in characteristic 2

For implementation purposes, it is often preferable to work over fields of char-
acteristic 2 in order to take advantage of the binary nature of computer ar-
chitectures. Hence, for completeness, we provide the applicable definitions and
formulas in the characteristic 2 case.

Definition 1.2.7 (Elliptic curves in characteristic 2). Let F be a field of char-
acteristic 2. An elliptic curve E defined over F is a set of the form

E(F) = {(x, y) ∈ F 2 | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {∞},

where either
a1 = 1

a3 = a4 = 0
a6 6= 0

or
a1 = a2 = 0

a3 6= 0

For any two points P and Q on E, the point P +Q is defined as follows:

• If Q =∞, then P +Q = P .

• If P =∞, then P +Q = Q.

In all other cases, we can write P = (x1, y1) and Q = (x2, y2). If x1 = x2 and
y1 + y2 + a1x1 + a3 = 0, then define P +Q =∞. Otherwise, set

m =

{
y2−y1
x2−x1

if P 6= Q,
3x2

1+2a2x1+a4−a1y1
2y1+a1x1+a3

if P = Q.

x3 = m2 + a1m− a2 − x1 − x2

y3 = −(m(x3 − x1) + y1 + a1x3 + a3)

and define P +Q to be the point (x3, y3).

1.3 Implementation issues

We now provide an overview of various topics related to implementations of el-
liptic curve cryptosystems. Because of space limitations, only the most essential
material is presented here. More comprehensive and detailed treatments can be
found in Hankerson et al. [28] or Cohen et al. [17].

10 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

1.3.1 Scalar multiplication

On an elliptic curve, the group operation is denoted additively. In such a group,
the group exponentiation operation is also written using additive notation; that
is, instead of using gα to denote the α-fold product g× g× · · ·× g for g ∈ G, we
use the notation αP to denote the α-fold sum P + P + · · ·+ P for P ∈ E. The
process of multiplying a group element P by an integer α is known as scalar
multiplication.

Virtually all cryptographic protocols based on elliptic curves, including the
Diffie-Hellman protocol (Protocol 1.1.1) and the protocols in Sect. 1.4, rely on
the ability to perform scalar multiplication efficiently. The standard algorithm
for computing αP , known as double-and-add or square-and-multiply, is a recur-
sive algorithm which accomplishes this task using O(logα) group operations.
Algorithm 1.3.1 contains an implementation of the double-and-add algorithm
in pseudocode.

Algorithm 1.3.1 The double-and-add algorithm.
Given: P ∈ E, α ∈ N. Output: αP .
1: if α = 0 then
2: output ∞
3: else if α is even then
4: β ← α

2
5: Q← βP
6: output Q+Q
7: else if α is odd then
8: β ← α− 1
9: Q← βP

10: output Q+ P
11: end if

Faster algorithms are available and are often appropriate depending on the
situation. On an elliptic curve, computing additive inverses is almost free, and
thus it is possible to speed up scalar multiplication using non-adjacent form
representations [41]. Other approaches include the use of double-base number
systems [20], and (in some cases) the use of special curves such as Edwards
curves [8] or curves with additional endomorphisms [27].

Example 1.3.1 (Certicom ECC challenge). This example is taken from the Cer-
ticom ECCp-109 challenge [15]. Let

p = 564538252084441556247016902735257
a = 321094768129147601892514872825668
b = 430782315140218274262276694323197

and consider the elliptic curve E : y2 = x3 + ax+ b over Fp. Let P be the point

(97339010987059066523156133908935, 149670372846169285760682371978898)

1.3. IMPLEMENTATION ISSUES 11

on E, and let k = 281183840311601949668207954530684. The value of kP is

(44646769697405861057630861884284, 522968098895785888047540374779097).

1.3.2 Curve selection

Consider an elliptic curve E defined over a finite field F = Fq. The number
of points on E is finite, since, with the exception of ∞, the points on E have
the form (x, y) ∈ F2

q. However, not all of these curves are equally suitable
for cryptography. For example, in any group having cardinality n where n is
composite, it is possible to compute discrete logarithms in O(

√
p) time where

p is the largest prime divisor of n, using the Pohlig-Hellman algorithm [44].
Therefore, in order to be suitable for cryptographic purposes, the number of
points on a curve should be equal to a prime, or at least admit a large prime
divisor.

One way to find such a curve is to select curves at random and compute their
cardinalities until an appropriate curve is found. A classical result in algebraic
geometry, known as the Hasse-Weil bound, states that for any elliptic curve
E/Fq the number of points #E on E(Fq) lies within the interval

q + 1− 2
√
q ≤ #E ≤ q + 1 + 2

√
q.

Moreover, Lenstra [35] has shown that for any subset consisting of a non-
negligible proportion of numbers within this interval, a non-negligible proportion
of elliptic curves E/Fq have cardinality within that subset. This result indicates
that, in practice, a randomly chosen curve will with high probability have prime
cardinality. In order to determine the cardinality of such a curve, it is necessary
to employ a fast point counting algorithm. Examples of such algorithms include
the Schoof-Elkies-Atkin algorithm [23,36,47] and the Satoh algorithm [46].

Use of pre-computed curves. An alternative approach is to use a pre-
computed elliptic curve which has been verified ahead of time to possess good
cryptographic properties. For example, the NIST FIPS 186-2 standard [43]
contains 15 different pre-computed curves, including the curve P-192 given by

p = 6277101735386680763835789423207666416083908700390324961279
b = 2455155546008943817740293915197451784769108058161191238065

E : y2 = x3 − 3x+ b over Fp

This curve has cardinality equal to

#E = 6277101735386680763835789423176059013767194773182842284081

which is a prime.

12 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

1.3.3 Point representations

As we have seen, a point P on an elliptic curve is given by a pair of coordinates
(x, y). Over a finite field Fq, each coordinate requires lg(q) bits for transmission
or storage. Hence, the naive representation of a point on an elliptic curve
requires 2 lg(q) bits. In many situations, it is desirable for efficiency reasons to
use smaller representations. One such optimization is to represent a point using
lg(q) + 1 bits by storing only the x-coordinate and determining y at runtime
(e.g. via the formula y =

√
x3 + a2x2 + a4x+ a6 when the characteristic is not

2). Here the x-coordinate requires lg(q) bits and the extra bit is used to store
the sign of the y-coordinate. This technique, known as point compression, is
described in ANSI X9.62 [3] and in U.S. Patent 6,252,960 [48].

An alternative technique is to transmit only the x-coordinate of P with no
additional information. In this case, the recipient must tolerate some ambiguity
in the value of P , because there are two possible choices for the y-coordinate.
Using the wrong value for the y-coordinate corresponds to using the point −P
instead of P . However, in the vast majority of ECC protocols, the central
encryption or decryption operation involves a scalar multiplication of the form
kP for some integer k. Note that, regardless of whether P or −P is used in the
computation of kP , the x-coordinate of the result is the same. In particular,
this property holds for the hashed ElGamal and ECIES protocols described
in Sect. 1.4.1, as well as for the BLS protocol (Sect. 1.5.2). Hence, for these
protocols, one can choose to represent points using only their x-coordinates
without affecting the validity of the protocols. This technique does not apply
to ECDSA (Protocol 1.4.7), since the ECDSA protocol is already designed to
transmit only the x-coordinate.

1.3.4 Generating points of prime order

In most elliptic curve-based protocols, it is necessary to generate a base point
of order n where n is a large prime; that is, a point P 6=∞ such that nP =∞.
When the cardinality of a curve E is prime, any non-identity point is suitable as
a base point. Otherwise, we write the cardinality of E as a product of the form
#E = hn where n is the largest prime factor. The integer h is called the cofactor
of E. Since the cryptographic strength of E depends on n (cf. Sect. 1.1.2), it is
best to maximize n, or in other words minimize h. In particular, we assume E
is chosen so that h�

√
n. For such values of h, a base point P on E of order n

can be obtained by computing P = hQ where Q is any randomly selected point
on E.

1.4 ECC protocols

In this section we provide some examples of elliptic curve cryptography (ECC)
protocols that have been developed and proposed. Whenever possible, we give
preference to protocols which have been approved in government or international
standards documents.

1.4. ECC PROTOCOLS 13

1.4.1 Public key encryption

Protocol 1.4.1 (Textbook ElGamal encryption). The textbook ElGamal pro-
tocol is one of the oldest and simplest public key encryption schemes. Here we
give a straightforward adaptation of the classic ElGamal encryption scheme [22]
to the setting of elliptic curves. We emphasize that this textbook protocol is for
illustration purposes only, is insecure against active attackers, and should not
be used except in very limited circumstances (see Remark 1.4.2).

Public parameters: An elliptic curve E defined over a finite field Fq, and a
base point P ∈ E(Fq) of large prime order n.

Key generation: Choose a random integer α in the interval 1 ≤ α < n. The
public key is αP . The private key is α.

Encryption: The message space is the set of all points Q ∈ E(Fq). To encrypt
a message M , choose a random integer r between 0 and n, and compute

C1 = rP

C2 = rαP +M

The ciphertext is (C1, C2).

Decryption: Given a ciphertext (C1, C2), compute

M ′ = C2 − αC1

and output the plaintext M ′.

Remark 1.4.2. The textbook ElGamal scheme is malleable [21], meaning that
given a valid encryption for M it is possible to construct valid encryptions
for related messages such as 2M . In rare situations, such as when designing
electronic voting schemes [18], this property is desirable, but in most cases
malleability represents a security shortcoming and should be avoided.

Remark 1.4.3. In addition to the security shortcomings mentioned above, one
drawback of the textbook ElGamal protocol is that it takes some work to trans-
form an arbitrary binary string into an element of the message space, i.e. a point
on the curve. In hashed ElGamal (Protocol 1.4.5) and ECIES (Protocol 1.4.6),
this problem is addressed through the use of a hybrid public-key/symmetric-key
scheme.

Example 1.4.4 (Textbook ElGamal with small parameters). Let p = 240 + 15 =
1099511627791, a = −3, and b = 786089953074. Let E be the curve y2 =
x3+ax+b defined over Fp. Let P be the base point (39282146988, 43532161490)
on E. Then the point P has order 1099510659307, which is a prime. Using these
parameters, a sample encryption and decryption operation is performed below.

Key generation: We choose α = 482363949216 at random, and compute
αP = (991136913417, 721626930099). The public key is αP and the pri-
vate key is 482363949216.

14 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

Encryption: Suppose our message is M = (556486217561, 262617177881). We
choose r = 843685127620 at random, and compute

C1 = rP = (332139500006, 485511205375)
C2 = rαP +M = (484509366473, 588381554550)

Decryption: One can check that C1 − αC2 = M for the above pair (C1, C2).

Protocol 1.4.5 (Hashed ElGamal encryption). The hashed ElGamal scheme
and its variants appear in [1, 14] and in the ANSI X9.63 standard [2]. This
scheme is secure against passive (eavesdropping) attacks, but depending on
the symmetric key encryption scheme that is used, may not be secure against
active adversaries who are capable of obtaining decryptions of related messages.
Compared to the ECIES protocol given in Protocol 1.4.6, the two protocols are
identical except for the addition of a MAC in ECIES, which protects against
active adversaries.

Public parameters: An elliptic curve E defined over a finite field Fq, a base
point P ∈ E(Fq) of large prime order n, a key derivation function H (based
on a hash function), and a symmetric key encryption scheme (E ,D).

Key generation: Choose a random integer α in the interval 1 ≤ α < n. The
public key is αP . The private key is α.

Encryption: The message space is the set of all binary strings. To encrypt a
message m, choose a random integer r between 0 and n, and compute

Q = rP

k = H(rαP)
c = Ek(m)

The ciphertext is (Q, c).

Decryption: Given a ciphertext (Q, c), compute

k′ = H(αQ)
m′ = Dk′(c)

and output the plaintext m′.

Protocol 1.4.6 (Elliptic Curve Integrated Encryption Scheme (ECIES)). This
protocol is the same as the hashed ElGamal scheme of Protocol 1.4.5 except
for the addition of a message authentication code, or MAC, which affords some
protection against active adversaries. It is part of the ANSI X9.63 standard [2].

Public parameters: An elliptic curve E defined over a finite field Fq, a base
point P ∈ E(Fq) of large prime order n, a key derivation function H which
outputs a pair of keys, a message authentication code M , and a symmetric
key encryption scheme (E ,D).

1.4. ECC PROTOCOLS 15

Key generation: Choose a random integer α in the interval 1 ≤ α < n. The
public key is αP . The private key is α.

Encryption: The message space is the set of all binary strings. To encrypt a
message m, choose a random integer r between 0 and n, and compute

Q = rP

(k1, k2) = H(rαP)
c = Ek1(m)
d = M(k2, c)

The ciphertext is (Q, c, d).

Decryption: Given a ciphertext (Q, c, d), compute

(k′1, k
′
2) = H(αQ)
d′ = M(k′2, c)

If αQ =∞ or d 6= d′, output NULL. Otherwise, compute

m′ = Dk′1
(c)

and output the plaintext m′.

1.4.2 Digital signatures

Protocol 1.4.7 (Elliptic Curve Digital Signature Algorithm (ECDSA)). The
Elliptic Curve Digital Signature Algorithm is an adaptation of the Digital Sig-
nature Algorithm [9] to the elliptic curve setting. ECDSA is described in the
ANSI X9.62 standard [3]. In the description below, the expression x(Q) denotes
the x-coordinate of a point Q ∈ E.

Public parameters: An elliptic curve E defined over Fp, a base point P ∈
E(Fp) of large prime order n, and a hash function H : {0, 1}∗ → Zn. In
the ANSI X9.62 standard [3], the function H is specified to be SHA-1 [42].

Key generation: Choose a random integer α in the interval 1 ≤ α < n. The
public key is αP and the private key is α.

Signing: The message space is the set of all binary strings. To sign a message
m, choose a random integer k in the interval 1 ≤ k < n. Compute

r = x(kP),

s =
H(m) + αr

k
mod n.

The signature of m is σ = (r, s).

16 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

Verification: Check whether 0 < r < n and 0 < s < n. If so, calculate

x
(
(s−1 mod n)(H(m)P + r(αP))

)
= x

(
H(m) + αr

s
· P

)
The signature is valid if and only if the above value equals r.

Example 1.4.8 (ECDSA signature generation). Let E be the curve P-192 given
in Sect. 1.3.2. Let P be the point

P =(602046282375688656758213480587526111916698976636884684818,
174050332293622031404857552280219410364023488927386650641)

on E. As indicated in Sect. 1.3.2, the point P has order

n = 6277101735386680763835789423176059013767194773182842284081

which is a prime. We use the hash function SHA-1 for H. Suppose that our
private key is

α = 91124672400575253522313308682248091477043617931522927879

and we wish to sign the ASCII message Hello world! (with no trailing new-
line). The SHA-1 hash of this message is

SHA-1(Hello world!) = d3486ae9136e7856bc42212385ea79709447580216

= 1206212019512053528979580233526017047056064403458

To sign the message, we choose a random value

k = 504153231276867485994363332808066129287065221360684475461

and compute

r = x(kP)
= 2657489544731026965723991092274654411104210887805224396626

s =
H(m) + αr

k
mod n

= 1131215894271817774617160471390853260507893393838210881939

The signature is (r, s). Note that even though E is defined over a field of 192
bits, the signature is 384 bits long because it consists of two elements mod n.

1.4.3 Public key validation

In most cases, achieving optimal security requires verifying that the points given
in the public parameters or the public key actually lie within the elliptic curve in
question. Failure to perform public key validation leads to a number of potential
avenues for attack [4] which under a worst-case scenario can reveal the secret
key. If we let E, Fq, n, P , and αP denote the curve, field, order of the base
point, base point, and public key respectively, then validation in this context
means checking all of the following:

1.5. PAIRING BASED CRYPTOGRAPHY 17

1. q = pm is a prime power.

2. The coefficients of E are in Fq.

3. The discriminant of E is nonzero.

4. The integer n is prime and sufficiently large ([2] recommends n > 2160).

5. The point P satisfies the defining equation for E, and the equations P 6=∞
and nP =∞.

6. The point αP satisfies the defining equation for E, and the equations
αP 6=∞ and nαP =∞.

Items 1 through 5 need to be checked once, and item 6 once per public key.

Remark 1.4.9. The ANSI X9.62 [3] and X9.63 [2] standards also stipulate that
the curve E should have large embedding degree (Definition 1.6.1), in order to
avoid the MOV reduction (Sect. 1.6.2). This requirement is beneficial in most
situations, but it cannot be met when employing pairing-based cryptography,
since pairing-based cryptography requires small embedding degrees.

1.5 Pairing based cryptography

Initially, elliptic curves were proposed for cryptography because of their greater
strength in discrete logarithm based protocols, which led to the development of
shorter, more efficient cryptosystems at a given security level. However, in recent
years, elliptic curves have found a major new application in cryptography thanks
to the existence of bilinear pairings on certain families of elliptic curves. The
use of bilinear pairings allows for the construction of entirely new categories of
protocols, such as identity-based encryption (IBE) and short digital signatures.
In this section we define the concept of bilinear pairings, state some of the key
properties and limitations of pairings, and give an overview of what types of
constructions are possible with pairings.

1.5.1 Definitions

We begin by presenting the basic definitions of bilinear pairings along with
some motivating examples of pairing-based protocols. A priori, there is no
relationship between bilinear pairings and elliptic curves, but in practice all
commonly used pairings are constructed with elliptic curves (see Sect. 1.7).

Definition 1.5.1. A bilinear pairing, cryptographic pairing, or pairing is an
efficiently computable group homomorphism

e : G1 ×G2 → GT

defined on prime order cyclic groups G1, G2, GT , with the following two prop-
erties:

18 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

Bilinearity: For all P1, P2, P ∈ G1 and Q1, Q2, Q ∈ G2,

e(P1 + P2, Q) = e(P1, Q) · e(P2, Q),
e(P,Q1 +Q2) = e(P,Q1) · e(P,Q2).

Non-degeneracy: For all P0 ∈ G1 and Q0 ∈ G2,

e(P0, Q) = 1 for all Q ∈ G2 =⇒ P0 = idG1

e(P,Q0) = 1 for all P ∈ G1 =⇒ Q0 = idG2

Note that, as a consequence of the definition, the groups G1 and G2 have a
common order #G1 = #G2 = n, and the image of the pairing in GT has order n
as well. In the literature, it is common to see the pair of groups (G1, G2) referred
to as a bilinear group pair. All known usable examples of bilinear pairings are
derived by taking G1 and G2 to be subgroups of an elliptic curve, and GT to be
a multiplicative subgroup of a finite field. Therefore, we will denote the group
operation in G1 and G2 using additive notation, and GT using multiplicative
notation.

Sometimes a cryptographic protocol will require a pairing that satisfies some
additional properties. The following classification from [26] is used to distinguish
between different types of pairings.

Definition 1.5.2. A bilinear pairing e : G1 ×G2 → GT is said to be a:

Type 1 pairing if either G1 = G2 or there exists an efficiently computable
isomorphism φ : G1 → G2 with efficiently computable inverse φ−1 : G2 →
G1. These two formulations are equivalent, since when G1 6= G2 one can
always represent an element g ∈ G2 using φ−1(g) ∈ G1.

Type 2 pairing if there exists an efficiently computable isomorphism ψ : G2 →
G1, but there does not exist any efficiently computable isomorphism from
G1 to G2.

Type 3 pairing if there exist no efficiently computable isomorphisms from G1

to G2 or from G2 to G1.

Many pairing-based cryptographic protocols depend on the bilinear Diffie-
Hellman (BDH) assumption, which states that the BDH problem defined below
is intractable:

Definition 1.5.3. Let e : G1 × G2 → GT be a bilinear pairing. The bilinear
Diffie-Hellman (BDH) problem is the following computational problem: given
P, αP, βP ∈ G1 and Q ∈ G2, compute e(P,Q)αβ .

Note that in the special case where e is a Type 1 pairing with G1 = G2,
the BDH problem is equivalent to the following problem: given P, αP, βP, γP ∈
G1, compute e(P, P)αβγ . This special case is more symmetric and easier to
remember.

1.5. PAIRING BASED CRYPTOGRAPHY 19

1.5.2 Pairing-based protocols

Protocol 1.5.4 (Tripartite one-round key exchange). The Diffie-Hellman pro-
tocol (Protocol 1.1.1) allows for two parties to establish a common shared secret
using only public communications. A variant of this protocol, discovered by
Joux [33], allows for three parties A, B, and C to establish a common shared
secret in one round of public communication. To do this, the parties make use
of a Type 1 pairing e with G1 = G2, and a base point P ∈ G1. Each participant
chooses respectively a secret integer α, β, and γ, and broadcasts respectively
αP , βP , and γP . The quantity

e(P, P)αβγ = e(αP, βP)γ = e(βP, γP)α = e(γP, αP)β

can now be calculated by anyone who has knowledge of the broadcasted informa-
tion together with at least one of the secret exponents α, β, γ. An eavesdropper
without access to any secret exponent would have to solve the bilinear Diffie-
Hellman problem in order to learn the common value.

Identity-based encryption. The most notable application of pairings to
date is the seminal construction of an identity based encryption scheme by
Boneh and Franklin [12]. An identity based encryption scheme, or IBE, is a
public key cryptosystem with the property that any string constitutes a valid
public key. Unlike traditional public key encryption, IBE requires private keys
to be generated by a trusted third party instead of by individual users.

Protocol 1.5.5 (Boneh-Franklin IBE). The Boneh-Franklin IBE scheme comes
in two versions, a basic version which is secure against a passive adversary and a
full version which is secure against chosen ciphertext attacks. For both versions,
the security is contingent on the BDH assumption and the assumption that the
hash function H is a random oracle. We describe here the basic version.

Public parameters: A bilinear pairing e : G1 × G2 → GT between groups
of large prime order n, a hash function H : {0, 1}∗ → G2, a base point
P ∈ G1, and a point αP ∈ G1 where α ∈R Z is a random integer chosen
by the trusted third party. Although the point αP is made public, the
integer α is not made public.

Key generation: Let σ{0, 1}∗ be any binary string, such as an email address.
Compute Q = H(σ). The public key is σ and the private key is αQ.
The owner of the public key (e.g., in this case, the owner of the email
address) must obtain the corresponding private key αQ from the trusted
third party, since only the trusted third party knows α.

Encryption: Given a public key σ and a message m, let Q = H(σ) ∈ G2.
Choose r ∈R Z at random and compute c = m ⊕ e(αP, rQ) where ⊕
denotes bitwise exclusive or. The ciphertext is the pair (rP, c).

Note that encryption of messages can be performed even if the key gener-
ation step has not yet taken place.

20 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

Decryption: Given a ciphertext (c1, c2), compute

m′ = c2 ⊕ e(c1, αQ)

and output m′ as the plaintext.

For a valid encryption (c1, c2) of m, the decryption process yields

c2 ⊕ e(c1, αQ) = (m⊕ e(αP, rQ))⊕ e(rP, αQ),

which is equal to m since e(αP, rQ) = e(rP, αQ).

Short signatures. Using pairing based cryptography, it is possible to con-
struct digital signature schemes having signature lengths equal to half the
length of ECDSA signatures (Protocol 1.4.7), without loss of security. Whereas
ECDSA signatures consist of two elements, a short signature scheme such as
BLS (described below) can sign messages using only one element, provided that
compressed point representations are used (Sect. 1.3.3).

Protocol 1.5.6 (Boneh-Lynn-Shacham (BLS)). The Boneh-Lynn-Shacham or
BLS protocol [13] was the first short signature scheme to be developed. The
security of BLS relies on the random oracle assumption for H and the co-Diffie-
Hellman (co-DH) assumption for the bilinear group pair (G1, G2). The co-DH
assumption states that given P ∈ G1 and Q,αQ ∈ G2, it is infeasible to compute
αP . When G1 = G2, the co-DH assumption is equivalent to the standard Diffie-
Hellman assumption for G1.

Public parameters: A bilinear pairing e : G1 × G2 → GT between groups of
large prime order n, a hash function H : {0, 1}∗ → G1, and a base point
Q ∈ G2.

Key generation: Choose a random integer α in the interval 1 ≤ α < n. The
public key is αQ and the private key is α.

Signing: The message space is the set of all binary strings. To sign a message
m, compute H(m) ∈ G1 and σ = αH(m). The signature of m is σ.

Verification: To verify a signature σ of a message m, compute the two quan-
tities e(H(m), αQ) and e(σ,Q). The signature is valid if and only if these
two values are equal.

For a legitimate signature σ of m, we have

e(H(m), αQ) = e(H(m), Q)α = e(αH(m), Q) = e(σ,Q),

so the signature does verify correctly.

1.6. PROPERTIES OF PAIRINGS 21

1.6 Properties of pairings

In this section we list some of the main properties shared by all pairings arising
from elliptic curves. Although the properties and limitations listed here are not
necessarily direct consequences of the definition of pairing, all existing examples
of pairings are constructed in essentially the same way and therefore share all
of the attributes described herein.

1.6.1 Embedding degree

We begin with a few general facts about pairings. All known families of pairings
are constructed from elliptic curves. Let E be an elliptic curve defined over Fq.
Suppose that the group order #E factors as #E = hn where n is a large prime
and h is an integer (called the cofactor). Let G1 be a subgroup of E(Fq) of
order n. In most cases (namely, when h - n), there is only one such subgroup,
given by G1 = {hP | P ∈ E(Fq)}. Then, for an appropriate choice of integer
k, there exists a pairing e : G1 ×G2 → GT , where G2 ⊂ E(Fqk) and GT ⊂ F∗qk .
When e is Type 1 , the group G2 can be taken to be a subgroup not only of
E(Fqk) but also of E(Fq).

Every bilinear pairing is a group homomorphism in each coordinate, and
the multiplicative group F∗qk has order qk − 1. Hence a necessary condition for
the existence of a pairing e : G1 × G2 → GT is that n divides qk − 1. One can
show that this condition is also sufficient. These facts motivate the following
definition.

Definition 1.6.1. For any elliptic curve E/Fq and any divisor n of #E(Fq),
the embedding degree of E with respect to n is the smallest integer k such that
n | qk − 1.

Example 1.6.2 (Type 1 pairing with k = 2). Let p = 76933553304715506523
and let E be the curve y2 = x3 + x defined over Fp. Then E is a supersingular
curve (Sect. 1.6.3) with cardinality

#E = p+ 1 = 76933553304715506523 = 4 · 19233388326178876631,

where h = 4 is the cofactor and n = 19233388326178876631 is prime. The
embedding degree is 2, since p2−1

n = 307734213218862026088 is an integer.
Points in G1 can be generated by choosing any random point in E(Fp) and
multiplying it by the cofactor h = 4. One example of such a point is

P = (19249681072784673607, 27563138688248568100).

The modified Weil pairing (Sect. 1.8.1) forms a Type 1 pairing e : G1×G1 → GT

on G1, with G2 = G1, where GT denotes the unique subgroup of F∗p2 of order
n. Using the point P above, we have

e(P, P) = 58219392405889795452 + 671682975778577314 i

where i =
√
−1 is a square root of −1 in Fp2 .

22 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

Example 1.6.3 (Type 3 pairing with k = 12). Let p = 1647649453 and n =
1647609109. The elliptic curve E : y2 = x3 + 11 is a Barreto-Naehrig curve
(Sect. 1.8.2) of embedding degree 12 and cofactor 1. Let G1 = E(Fp) and let
G2 be any subgroup of E(Fp12) of order n. If we construct Fp12 as Fp[w] where
w12 + 2 = 0, then the points

P = (1107451886, 1253137994) ∈ E(Fp)

Q = (79305390w4 + 268184452w10, 311639750w3 + 1463165539w9) ∈ E(Fp12)

generate appropriate groups G1 and G2. Here the point Q is obtained from a
sextic twist [7]. Using the Tate pairing (Sect. 1.7.3), we obtain a Type 3 pairing
e : G1 × G2 → GT where GT is the unique subgroup of F∗p12 of order n. The
value of the Tate pairing at P and Q is

e(P,Q) = 1285419312 + 881628570w + 506836791w2 + 155425783w3 +

1374794677w4 + 1219941843w5 + 285132062w6 + 1621017742w7 +

525459081w8 + 1553114915w9 + 1356557676w10 + 175456091w11

where w12 + 2 = 0 as above.

Example 1.6.4 (Curve with intractably large embedding degree). We must em-
phasize that, as a consequence of a result of Balasubramanian and Koblitz [5],
the overwhelming majority of elliptic curves have extremely large embedding
degrees, which render the computation of any bilinear pairings infeasible. In
other words, very few elliptic curves admit a usable pairing.

For example, consider the Certicom ECCp-109 curve of Example 1.3.1. This
curve has order n = 564538252084441531840258143378149, which is a prime.
The embedding degree of this curve is equal to n−1 ≈ 2109. Hence any bilinear
pairing on this curve takes values in the field Fpn−1 . However, the number
pn−1 is so large that no computer technology now or in the foreseeable future
is capable of implementing a field of this size.

1.6.2 MOV reduction

When the embedding degree is small, the existence of a bilinear pairing can be
used to transfer discrete logarithms on the elliptic curve to the corresponding
discrete logarithm problem in a finite field. In many cases, this reduction negates
the increased security of elliptic curves compared to finite fields (Sect. 1.1.2).
Of course, this concern only applies to the minority of elliptic curves which
admit a bilinear pairing, and oftentimes the extra features provided by pairings
outweigh the security concerns. Nonetheless, an understanding of this issue is
essential whenever designing or implementing a scheme using pairings.

The reduction algorithm is known as the MOV reduction [38] or the Frey-
Rück reduction [25] , and proceeds as follows. Given a bilinear pairing e : G1 ×
G2 → GT , let P and αP be any pair of points in G1. (The same reduction
algorithm also works for G2.) Choose any point Q ∈ G2 and compute the

1.6. PROPERTIES OF PAIRINGS 23

quantities g = e(P,Q) and h = e(αP,Q). Then, by the bilinearity property, we
have h = gα. Hence the discrete logarithm of h in GT is equal to the discrete
logarithm of αP in G1. Since GT is a multiplicative subgroup of a finite field,
the index calculus algorithm [34] can be used to solve for discrete logarithms
in GT . Depending on the value of the embedding degree, the index calculus
algorithm on GT can be faster than the Pollard rho algorithm [45] on G1.

Specifically, let E/Fq be an elliptic curve as in Sect. 1.6.1, with embedding
degree k. An instance of the discrete logarithm problem on G1 = E(Fq) can
be solved either directly on G1, or indirectly via index calculus on GT ⊂ F∗qk .
Figure 1.6.2, based on [30], estimates the optimal choice of k for which the
index calculus algorithm on F∗qk takes the same amount of time as the Pol-
lard rho algorithm [45] on E(Fq). Although the comparison in [30] is based on
integer factorization, the performance of the index calculus algorithm is compa-
rable [34].

Size of E(Fq) Equivalent Optimal
finite field size embedding degree

110 512 4.5
160 1024 6.5
192 1536 8
256 3072 12

Figure 1.2: Estimates of the optimal embedding degree k for various curve sizes.

Not all applications require choosing an optimal embedding degree. For
example, in identity based encryption, faster performance can be obtained by
using a curve with a 512-bit q and embedding degree 2. However, bandwidth-
sensitive applications such as short signatures require embedding degrees at
least as large as the optimal value in order to attain the best possible security.

1.6.3 Overview of pairing families

In this section we give a broad overview of the available families of pairing based
curves. Technical details are deferred to Sect.s 1.7 and 1.8.

Elliptic curves over finite fields come in two types: supersingular and or-
dinary. An elliptic curve E/Fpm is defined to be supersingular if p divides
pm + 1 − #E. All known constructions of Type 1 pairings use supersingular
curves [32]. Menezes, Okamoto, and Vanstone [38] have shown that the max-
imum possible embedding degree of a supersingular elliptic curve is 6. More
specifically, over fields of characteristic p = 2, p = 3, and p > 3, the maximum
embedding degrees are 4, 6, and 3 respectively. Thus, the maximum achievable
embedding degree at present for a Type 1 pairing is 6. Since many protocols,
such as tripartite one-round key exchange (Protocol 1.5.4), require a Type 1
pairing, they must be designed and implemented with this limitation in mind.

An ordinary elliptic curve is any elliptic curve which is not supersingular. In

24 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

the case of ordinary elliptic curves, the Cocks-Pinch method [16, 24] is capable
of producing curves having any desired embedding degree [24]. However, the
curves obtained via this method do not have prime order. For prime order el-
liptic curves, the Barreto-Naehrig family of curves [7], having embedding degree
12, represents the largest embedding degrees available today, although for per-
formance reasons the MNT family of curves [40], having maximum embedding
degree 6, is sometimes preferred. Pairings on ordinary curves can be selected to
be either Type 2 or Type 3 depending on the choice of which subgroup of the
curve is used in the pairing [26].

1.7 Implementations of pairings

This section contains the technical definitions and concepts required in order
to construct pairings. We also give proofs of some of the basic properties of
pairings, along with concrete algorithms for implementing the standard pairings.
An alternative approach, for readers who wish to skip the technical details, is to
use a pre-existing implementation, such as Ben Lynn’s pbc library [37], which
is published under the GNU General Public License.

1.7.1 Divisors

All known examples of cryptographic pairings rely in an essential way on the
notion of a divisor on an elliptic curve. In this section we give a brief self-
contained treatment of the basic facts about divisors. We will then use this
theory to give examples of cryptographic pairings and describe how they can be
efficiently computed.

Recall that every nonzero integer (more generally, every rational number)
admits a unique factorization into a product of prime numbers. For example,

6 = 2 · 3 7/4 = 71 · 2−2

50 = 2 · 52 1 = ∅

or, in additive notation,

log(6) = log(2) + log(3) log(7/4) = log(7) + (−2) log(2)
log(50) = log(2) + 2 log(5) log(1) = 0

Observe that prime factorizations satisfy the following properties:

1. The sum is finite,

2. The coefficient of each prime is an integer,

3. The sum is unique: no two sums are equal unless all the coefficients are
equal.

These properties motivate the definition of divisor on an elliptic curve:

1.7. IMPLEMENTATIONS OF PAIRINGS 25

Definition 1.7.1. A divisor on an elliptic curve E is a formal sum
∑
P∈E

aP (P)

of points P on the curve such that:

1. The sum is finite,

2. The coefficient aP of each point P is an integer,

3. The sum is unique: no two sums are equal unless all the coefficients are
equal.

The degree of a divisor D =
∑
P∈E

aP (P), denoted deg(D), is the integer given

by the finite sum
∑
P∈E

aP .

The empty divisor is denoted ∅, and its degree by definition is 0.

Definition 1.7.2. Let E : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6 be an elliptic

curve defined over a field F . A rational function on E is a function f : E → F
of the form

f(x, y) =
f1(x, y)
f2(x, y)

where f1(x, y) and f2(x, y) are polynomials in the two variables x and y.

Definition 1.7.3. Let f(x, y) = f1(x,y)
f2(x,y) be a nonzero rational function on an

elliptic curve E. For any point P ∈ E, the order of f at P , denoted ordP (f), is
defined as follows:

• If f(P) 6= 0 and 1
f(P) 6= 0, then ordP (f) = 0.

• If f(P) = 0, then ordP (f) equals the multiplicity of the root at P of the
numerator f1(x, y).

• If 1
f(P) = 0, then ordP (f) equals the negative of the multiplicity of the

root at P of the denominator f2(x, y).

Definition 1.7.4. Let f be a nonzero rational function on an elliptic curve E.
The principal divisor generated by f , denoted div(f), is the divisor

div(f) :=
∑
P∈E

ordP (f) · (P),

which represents the (finite) sum over all the points P ∈ E at which either the
numerator or the denominator of f is equal to zero.

A divisor D on E is called a principal divisor if D = div(f) for some rational
function f on E.

Note that div(fg) = div(f) + div(g), and div(1) = ∅. Hence div is a homo-
morphism from the multiplicative group of nonzero rational functions on E to
the additive group of divisors on E. Accordingly, the image of div is a subgroup
of the group of divisors.

26 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

Theorem 1.7.5. For any rational function f on E, we have deg(div(f)) = 0.

Proof. [49, II.3].

Example 1.7.6. Let E be the elliptic curve y2 = x3 − x. Let f be the rational
function f(x, y) = x

y . We can calculate div(f) as follows. The numerator
f1(x, y) = x is zero at the point P = (0, 0), and 1/f1 = 1/x is zero at P =
∞. Since the line x = 0 is tangent to the curve E at (0, 0), we know that
ord(0,0)(f1) = 2. By Theorem 1.7.5, we must also have that ord∞(f1) = −2.
Hence the principal divisor generated by x is

div(x) = 2((0, 0))− 2(∞).

A similar calculation yields

div(y) = ((0, 0)) + ((0, 1)) + ((0,−1))− 3(∞)

and hence

div (f) = div(x)− div(y) = ((0, 0))− ((0, 1))− ((0,−1)) + (∞).

Definition 1.7.7. Two divisors D1 and D2 are linearly equivalent (denoted by
D1 ∼ D2) if there exists a nonzero rational function f such that

D1 −D2 = div(f).

The relation of linear equivalence between divisors is an equivalence rela-
tion. Note that, by Theorem 1.7.5, a necessary condition for two divisors to be
equivalent is that they have the same degree.

Lemma 1.7.8. For any two points P,Q ∈ E,

(P)− (∞) + (Q)− (∞) ∼ (P +Q)− (∞),

where the addition sign on the right hand side denotes geometric addition.

Proof. If either P = ∞ or Q = ∞, then the two sides are equal, and hence
necessarily equivalent. Suppose now that P + Q = ∞. Let x − d = 0 be the
vertical line passing through P and Q. Then, by a calculation similar to that
in Example 1.7.6, we find that

div(x− d) = (P) + (Q)− 2(∞)

so (P) + (Q)− 2(∞) ∼ ∅ = (∞)− (∞) = (P +Q)− (∞), as desired.
The only remaining case is where P and Q are two points satisfying P 6=∞,

Q 6= ∞, and P 6= −Q. In this case, let ax + by + c = 0 be the equation of the
line passing through the points P and Q, and let x− d = 0 be the equation of
the vertical line passing through P +Q. These two lines intersect at a common
point R lying on the elliptic curve.

1.7. IMPLEMENTATIONS OF PAIRINGS 27

We have

div(ax+ by + c) = (P) + (Q) + (R)− 3(∞),
div(x− d) = (R) + (P +Q)− 2(∞),

div
(
ax+ by + c

x− d

)
= (P) + (Q)− (P +Q)− (∞)

= (P)− (∞) + (Q)− (∞)− [(P +Q)− (∞)],

implying that (P)− (∞) + (Q)− (∞)− [(P +Q)− (∞)] is a principal divisor,
as required.

Remark 1.7.9. It is not possible for (P)+(Q) to be equivalent to (P +Q), since
the first divisor has degree 2 and the second divisor has degree 1. Lemma 1.7.8
says that, after correcting for this discrepancy by adding ∞ terms, the divisors
become equivalent.

Proposition 1.7.10. Let D =
∑
aP (P) be any degree zero divisor on E. Then

D ∼
(∑

aPP
)
− (∞),

where the interior sum denotes elliptic curve point addition.

Proof. Since D has degree zero, the equation

D =
∑
P∈E

aP [(P)− (∞)]

holds. Now apply Lemma 1.7.8 repeatedly.

The converse of Proposition 1.7.10 also holds, and its proof follows from a
well known result known as the Riemann-Roch theorem.

Proposition 1.7.11. Let D1 =
∑
aP (P) and D2 =

∑
bP (P) be two degree

zero divisors on E. Then D1 ∼ D2 if and only if∑
P∈E

aPP =
∑
P∈E

bPP.

Proof. [49, III.3.4].

1.7.2 Weil pairing

The Weil pairing was historically the first example of a cryptographic pairing
to appear in the literature. In this section we define the Weil pairing and prove
some of its basic properties.

28 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

Definition 1.7.12. Let E/F be an elliptic curve and let n > 0 be an integer.
The set of n-torsion points of E, denoted E[n], is given by

E[n] :=
{
P ∈ E(F̄) | nP =∞

}
,

where F̄ denotes the algebraic closure of F . The set E[n] is always a subgroup
of E(F̄).

Remark 1.7.13. If the characteristic of F does not divide n, then the group E[n]
is isomorphic as a group to Z/nZ× Z/nZ.

Definition 1.7.14. Let f be a rational function and let D =
∑
aP (P) be a

degree zero divisor on E. The value of f at D, denoted f(D), is the element

f(D) :=
∏

f(P)aP ∈ F.

Definition 1.7.15. Let E be an elliptic curve over F . Fix an integer n > 0
such that char(F) - n and E[n] ⊂ E(F). For any two points P,Q ∈ E[n], let
AP be any divisor linearly equivalent to (P)− (∞) (and similarly for AQ). By
Proposition 1.7.10, the divisor nAP is linearly equivalent to (nP)− (n∞) = ∅.
Hence nAP is a principal divisor. Let fP be any rational function having divisor
equal to nAP (and similarly for fQ).

The Weil pairing of P and Q is given by the formula

e(P,Q) =
fP (AQ)
fQ(AP)

,

valid whenever the expression is defined (i.e., neither the numerator nor the
denominator nor the overall fraction involves a division by zero).

Proposition 1.7.16. The Weil pairing is well defined for any pair of points
P,Q ∈ E[n].

Proof. The definition of Weil pairing involves a choice of divisors AP , AQ and a
choice of rational functions fP , fQ. In order to prove the proposition, we need
to show that for any two points P,Q there exists a choice such that e(P,Q) is
defined, and that any other set of choices for which e(P,Q) is defined leads to
the same value.

We will begin by proving the second part. To start with, the choice of fP

does not affect the value of e(P,Q), since for any other function f̂P sharing the
same divisor, we have

div(f̂P /fP) = ∅,

which means f̂P = cfP for some nonzero constant c ∈ F . It follows then that
f̂P (AQ) = fP (AQ), since AQ has degree zero, and therefore the factors of c
cancel out in the formula of Definition 1.7.14.

We now prove that the choice of AP does not affect the value of e(P,Q); the
proof for AQ is similar. If ÂP is another divisor linearly equivalent to AP , then

1.7. IMPLEMENTATIONS OF PAIRINGS 29

ÂP = AP + div(g) for some rational function g. It follows that f̂P := fP · gn is
a rational function whose divisor is equal to nÂP . The value of e(P,Q) under
this choice of divisor is equal to

ê(P,Q) =
f̂P (AQ)
fQ(ÂP)

=
fP (AQ)g(AQ)n

fQ(AP)fQ(div(g))

=
fP (AQ)
fQ(AP)

g(nAQ)
fQ(div(g))

= e(P,Q)
g(div(fQ))
fQ(div(g))

.

The fraction g(div(fQ))
fQ(div(g)) is equal to one by the Weil reciprocity formula, which

we will not prove here. A proof of Weil reciprocity can be found in [11,39].
To complete the proof, we need to show that there exists a choice of divisors

AP and AQ for which the calculation of e(P,Q) does not involve division by
zero. The naive choice of AP = (P) − (∞), AQ = (Q) − (∞) does not work
whenever Q 6=∞, because in this case div(fQ) = n(Q)− n(∞), so 1/fQ equals
zero at ∞, and consequently

fQ(AP) =
fQ(P)
fQ(∞)

= 0.

To fix this problem, let R be any point in E(F̄) not equal to any of the four
points Q, ∞, −P , Q − P . Here F̄ denotes the algebraic closure of F , over
which E has infinitely many points, guaranteeing that such an R exists. Set
AP = (P +R)− (R). Then AP is linearly equivalent to (P)− (∞), and

fQ(AP) =
fQ(P +R)
fQ(R)

∈ F ∗,

since div(fQ) = n(Q)−n(∞), and we have chosen R in such a way that neither
R nor P +R coincides with either Q or ∞. Similarly, we find that

fP (AQ) =
fP (Q)
fP (∞)

∈ F ∗,

because div(fP) = n(P +R)− n(R), and neither Q nor ∞ coincides with R or
P +R.

Theorem 1.7.17. The Weil pairing satisfies the following properties.

• e(P1 + P2, Q) = e(P1, Q) e(P2, Q) and e(P,Q1 +Q2) = e(P,Q1) e(P,Q2)
(bilinearity)

• e(aP,Q) = e(P, aQ) = e(P,Q)a, for all a ∈ Z

• e(P,∞) = e(∞, Q) = 1

• e(P,Q)n = 1

30 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

• e(P,Q) = e(Q,P)−1 and e(P, P) = 1 (anti-symmetry)

• If P 6= ∞ and F is algebraically closed, there exists Q ∈ E such that
e(P,Q) 6= 1 (non-degeneracy)

Proof. We begin with bilinearity. Suppose P1, P2, Q ∈ E[n]. Observe that

AP1+P2 ∼ (P1 + P2)− (∞) ∼ (P1)− (∞) + (P2)− (∞) ∼ AP1 +AP2

by Lemma 1.7.8. Hence we may use AP1 +AP2 as our choice of AP1+P2 . More-
over, if fP1 and fP2 are rational functions having divisor nAP1 and nAP2 re-
spectively, then

div(fP1fP2) = div(fP1) + div(fP2) = nAP1 + nAP2 = nAP1+P2 .

Accordingly, we may take fP1+P2 to be equal to fP1fP2 . Therefore,

e(P1 + P2, Q) =
fP1+P2(AQ)
fQ(AP1+P2)

=
(fP1fP2)(AQ)
fQ(AP1 +AP2)

=
fP1(AQ)fP2(AQ)
fQ(AP1)fQ(AP2)

= e(P1, Q) e(P2, Q),

as desired. The proof that e(P,Q1 +Q2) = e(P,Q1) e(P,Q2) is similar.
The property e(aP,Q) = e(P, aQ) = e(P,Q)a follows from bilinearity, and

e(P,∞) = e(∞, Q) = 1 is a consequence of the definition of the Weil pairing.
These two facts together imply that e(P,Q)n = e(nP,Q) = e(∞, Q) = 1.

Anti-symmetry follows from the definition of the Weil pairing, since

e(P,Q) =
fP (AQ)
fQ(AP)

=
(
fQ(AP)
fP (AQ)

)−1

= e(Q,P)−1.

We will not prove non-degeneracy, since it can be easily verified in practice via
computation. A proof of non-degeneracy can be found in [11].

1.7.3 Tate pairing

The Tate pairing is a non-degenerate bilinear pairing which shares much in
common with the Weil pairing. It is generally preferred over the Weil pairing in
most implementations of cryptographic protocols, because it can be computed
more efficiently.

Definition 1.7.18. Let E be an elliptic curve over a field F . Fix an integer
n > 0 for which char(F) - n and E[n] ⊂ E(F). For any two points P,Q ∈ E[n],
the Tate proto-pairing of P and Q, denoted 〈P,Q〉, is given by the formula

〈P,Q〉 := fP (AQ) ∈ F ∗/F ∗n,

valid whenever the expression fP (AQ) is defined and nonzero.

1.7. IMPLEMENTATIONS OF PAIRINGS 31

Proposition 1.7.19. The value of the Tate proto-pairing is well defined, inde-
pendent of the choices of AP , AQ, and fP .

Proof. As in the case of the Weil pairing, the choice of fP is irrelevant once AP

is fixed. We may thus take AP = (P) − (∞) and AQ = (Q + R) − (R) where
R 6= P, ∞, −Q, P −Q. For this choice of AP and AQ, the expression fP (AQ)
will be a nonzero element of F .

We now show that 〈P,Q〉 takes on the same value independent of the choice
of AP and AQ. If a different value of AQ is chosen, say ÂQ = AQ +div(g), then,
using Weil reciprocity, we find that

〈̂P,Q〉 = fP (ÂQ) = fP (AQ) fP (div(g)) = fP (AQ) g(div(fP))
= fP (AQ) g(nAP) = fP (AQ) g(AP)n.

The latter value is equal to 〈P,Q〉 = fP (AQ) in the quotient group F ∗/F ∗n.
Likewise, if a different divisor ÂP = AP +div(g) is used, then nÂP = div(fP ·gn),
so

〈̂P,Q〉 = f̂P (AQ) = fP (AQ)g(AQ)n ≡ fP (AQ) (mod F ∗n).

Theorem 1.7.20. The Tate proto-pairing satisfies the following properties.

• 〈P1 + P2, Q〉 = 〈P1, Q〉 〈P2, Q〉 and 〈P,Q1 +Q2〉 = 〈P,Q1〉 〈P,Q2〉 (bilin-
earity)

• 〈aP,Q〉 = 〈P, aQ〉 = 〈P,Q〉a for all a ∈ Z

• 〈P,∞〉 = 〈∞, Q〉 = 1

• 〈P,Q〉n = 1

• If P 6= ∞, and F is algebraically closed, there exists Q ∈ E[n] such that
〈P,Q〉 6= 1 (non-degeneracy)

Note that the Tate proto-pairing is not anti-symmetric.

Proof. As in the case of the Weil pairing, we may take AQ1+Q2 to be AQ1 +AQ2 ,
and fP1+P2 to be fP1fP2 . In this case,

〈P1 + P2, Q〉 = fP1+P2(AQ) = fP1(AQ) fP2(AQ) = 〈P1, Q〉 〈P2, Q〉,
〈P,Q1 +Q2〉 = fP (AQ1 +AQ2) = fP (AQ1) fP (AQ2) = 〈P,Q1〉 〈P,Q2〉.

All of the other properties (except for non-degeneracy) follow from bilinearity
and the definition of the pairing. We will not prove non-degeneracy (see [11] for
a proof).

The Tate pairing is obtained from the Tate proto-pairing by raising the value
of the proto-pairing to an appropriate power. The Tate pairing is only defined
for elliptic curves over finite fields.

32 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

Definition 1.7.21. Let F = Fqk be a finite field. Let n be an integer dividing
qk − 1, and fix two points P,Q ∈ E[n]. The Tate pairing e(P,Q) of P and Q is
the value

e(P,Q) = 〈P,Q〉
qk−1

n ∈ F∗qk .

Theorem 1.7.22. The Tate pairing satisfies all the properties listed in Theo-
rem 1.7.20.

Proof. Exponentiation by qk−1
n is an isomorphism from F∗qk/F∗qk

n to
(
F∗qk

) qk−1
n

,
so all of the properties in Theorem 1.7.20 hold for the Tate pairing.

1.7.4 Miller’s algorithm

The calculation of Weil and Tate pairings on the subgroup of n-torsion points
E[n] of an elliptic curve E can be performed in a number of field operations
polynomial in log(n), thanks to the following algorithm of Miller [39], which we
present here.

Fix a triple of n-torsion points P,Q,R ∈ E[n]. We assume for simplicity
that n is large, since this is the most interesting case from an implementation
standpoint. For each integer m between 1 and n, let fm denote a rational
function whose divisor has the form

div(fm) = m(P +R)−m(R)− (mP) + (∞).

We will first demonstrate an algorithm for calculating fn(Q), and then show
how we can use this algorithm to find e(P,Q).

For any two points P1, P2 ∈ E[n], let gP1,P2(x, y) = ax + by + c be the
equation of the line passing through the two points P1 and P2. In the event
that P1 = P2, we set gP1,P2(x, y) to be equal to the tangent line at P1. If either
P1 or P2 is equal to ∞, then gP1,P2 is the equation of the vertical line passing
through the other point; and finally, if P1 = P2 =∞, then we define gP1,P2 = 1.
In all cases,

div(gP1,P2) = (P1) + (P2) + (−P1 − P2)− 3(∞).

To calculate fm(Q) for m = 1, 2, . . . , n, we proceed by induction on m. If
m = 1, then the function

f1(x, y) =
gP+R,−P−R(x, y)

gP,R(x, y)

has divisor equal to (P +R)− (R)− (P) + (∞). We can evaluate this function
at Q to obtain f1(Q).

For values of m greater than 1, we consider separately the cases of m even
and m odd. If m is even, say m = 2k, then

fm(Q) = fk(Q)2 · gkP,kP (Q)
gmP,−mP (Q)

,

1.8. PAIRING-FRIENDLY CURVES 33

while if m is odd we have

fm(Q) = fm−1(Q) · f1(Q) ·
g(m−1)P,P (Q)
gmP,−mP (Q)

.

Note that every two steps in the induction process reduces the value of m by
a factor of 2 or more. This feature is the reason why this method succeeds in
calculating fn(Q) even for very large values of n.

The Tate pairing of two n-torsion points P,Q ∈ E[n] can now be calculated
as follows. Choose two random points R,R′ ∈ E[n]. Set AP = (P+R)−(R) and
AQ = (Q+R′)− (R′). Using the method above, find the values of fn(Q+R′)
and fn(R′). Since div(fn) = n(P +R)− n(R)− (nP) + (∞) = nAp = div(fP),
we find that

fn(Q+R′)
fn(R′)

=
fP (Q+R′)
fP (R′)

= fP (AQ).

It is now easy to calculate the Tate pairing e(P,Q) = fP (AQ)
qk−1

n . To find
the Weil pairing, simply repeat the procedure in order to find fQ(AP), and
divide it into fP (AQ). As long as the integer n is sufficiently large, it is unlikely
that the execution of this algorithm will yield a division by zero error. On the
rare occasion when such an obstacle does arise, repeat the calculation using a
different choice of random points R and R′. A description of Miller’s algorithm
in pseudocode can be found in Figure 1.3.

Note that the Tate pairing consists of only one divisor evaluation whereas the
Weil pairing requires two. Since divisor evaluation is the most time consuming
step in pairing computation, the Tate pairing is superior to the Weil pairing in
terms of performance. In certain special cases, alternative pairings are available
which are even faster [6, 29].

1.8 Pairing-friendly curves

As remarked in Sect. 1.6, low embedding degrees are necessary in order to
construct pairings, and very few elliptic curves have low embedding degrees. In
this section, we describe some families of elliptic curves having low embedding
degree. Such curves are often called pairing-friendly curves.

1.8.1 Supersingular curves

Recall that a supersingular curve is an elliptic curve E/Fpm such that p divides
pm + 1 − #E. All supersingular elliptic curves have embedding degree k ≤ 6
and hence are pairing-friendly. For any supersingular curve, the Weil or Tate
pairing represents a cryptographic pairing on E[n] where n is any prime divisor
of #E. Moreover, a type 1 pairing ê can be obtained on E using the formula

ê(P,Q) = e(P,ψ(Q))

where e : E[n]×E[n]→ F∗pmk is the usual Weil (or Tate) pairing, P,Q ∈ E(Fpm)
and ψ : E(Fpm) → E(Fpmk) is an algebraic map. Such a map ψ is called a

34 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

Algorithm 1.7.1 Computing g(E,P1, P2, Q) = gP1,P2(Q)

Given: E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Given: P1 = (x1, y1), P2 = (x2, y2), Q = (xQ, yQ)
if P1 =∞ and P2 =∞ then

output 1
else if P1 =∞ then

output xQ − x2

else if P2 =∞ then
output xQ − x1

else if P1 = P2 then
output (3x2

1 + 2a2x1 + a4 − a1y1)(xQ − x1)− (2y1 + a1x1 + a3)(yQ − y1)
else

output (xQ − x1)(y2 − y1) + (yQ − y1)(x1 − x2)
end if

Algorithm 1.7.2 Computing f(E,P1, P2, Q,m) = fm(Q)
Given: E,P1, P2, Q,m

if m = 1 then
output g(E,P1+P2,−P1−P2,Q)

g(E,P1,P2,Q)

else if m is even then
k ← m

2

output f(E,P1, P2, Q, k)2
g(E,kP1,kP1,Q)

g(E,mP1,−mP1,Q)

else if m is odd then
output f(E,P1, P2, Q,m− 1)f(E,P1, P2, Q, 1) g(E,(m−1)P1,P1,Q)

g(E,mP1,−mP1,Q)

end if

Algorithm 1.7.3 Computing the Weil pairing e(P,Q) for P,Q ∈ E[n]
Given: E,P,Q, n
R1 ←R E[n]
R2 ←R E[n]
return f(E,P1,R1,Q+R2,n)f(E,Q,R2,R1,n)

f(E,P1,R1,R2,n)f(E,Q,R2,P1+R1,n)

Algorithm 1.7.4 Computing the Tate pairing e(P,Q) for P,Q ∈ E[n]
Given: E/Fq, P,Q, n
k ← embedding degree of E with respect to n
R1 ←R E[n]
R2 ←R E[n]

return
(

f(E,P1,R1,Q+R2,n)
f(E,P1,R1,R2,n)

) qk−1
n

Figure 1.3: Computing the Weil and Tate pairings

1.8. PAIRING-FRIENDLY CURVES 35

Field Elliptic curve Distortion Group emb.
map order deg.

Fp
y2 = x3 + ax (x, y) 7→ (−x, iy)

p+ 1 2
p ≡ 3 mod 4 i2 = −1

Fp
y2 = x3 + b (x, y) 7→ (ζx, y)

p+ 1 2
p ≡ 2 mod 3 ζ3 = 1

Fp2

y2 = x3 + b
p ≡ 2 mod 3
b /∈ Fp

(x, y) 7→

p2 − p+ 1 3
(

wxp

r(2p−1)/3 ,
yp

rp−1

)
r2 = b, r ∈ Fp2

w3 = r, w ∈ Fp6

F2m

y2 + y = x3 + x (x, y) 7→

2m ± 2
m+1

2 + 1 4or (x+ s2, y + sx+ t)
y2 + y = x3 + x+ 1 s, t ∈ F24m , s4 = s

m ≡ 1 mod 2 t2 + t = s6 + s2

F3m

(x, y) 7→ (−x+ r, uy)

3m ± 3
m+1

2 + 1 6y2 = x3 + 2x± 1 u2 = −1, u ∈ F32m

m ≡ ±1 mod 12 r3 + 2r ± 2 = 0
r ∈ F33m

F3m

(x, y) 7→ (−x+ r, uy)

3m ∓ 3
m+1

2 + 1 6y2 = x3 + 2x± 1 u2 = −1, u ∈ F32m

m ≡ ±5 mod 12 r3 + 2r ± 2 = 0
r ∈ F33m

Figure 1.4: Supersingular curves, distortion maps, and embedding degrees

distortion map, and the corresponding pairing ê above is known as the modified
Weil (or Tate) pairing. All known families of Type 1 pairings arise from this
construction, and Verheul [50] has shown that distortion maps do not exist on
ordinary elliptic curves of embedding degree k > 1. Hence at present all known
families of Type 1 pairings require the use of supersingular curves.

Figure 1.4 (an extended version of Fig. 1 in [32]) lists all the major families of
supersingular elliptic curves together with their corresponding distortion maps
and embedding degrees.

1.8.2 Ordinary curves

Certain applications such as short signatures require pairing-friendly elliptic
curves of embedding degree larger than 6. In this section we describe two such
constructions, the Barreto-Naehrig construction and the Cocks-Pinch method.
Both techniques are capable of producing elliptic curves with embedding degree
greater than 6. The Cocks-Pinch method produces elliptic curves of arbitrary
embedding degree, but not of prime order. The Barreto-Naehrig construction,
on the other hand, produces curves of embedding degree 12 and prime order.

36 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

Barreto-Naehrig curves. The Barreto-Naehrig family of elliptic curves [7]
achieves embedding degree 12 while retaining the property of having prime
order. This embedding degree is currently the largest available for prime order
pairing-friendly elliptic curves.

Let N(x) and P (x) denote the polynomials

N(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

P (x) = 36x4 + 36x3 + 24x2 + 6x+ 1

and choose a value of x for which both n = N(x) and p = P (x) are prime. (For
example, the choice x = 82 yields the curve in Example 1.6.3.) Search for a
value b ∈ Fp for which b + 1 is a quadratic residue (i.e. has a square root) in
Fp, and the point Q = (1,

√
b+ 1) on the elliptic curve E : y2 = x3 + b satisfies

nQ = ∞. The search procedure can be as simple as starting from b = 1 and
incrementing b until a suitable value is found. For such a value b, the curve
E/Fp given by the equation y2 = x3 + b has n points and embedding degree 12,
and the point Q = (1,

√
b+ 1) can be taken as a base point.

Cocks-Pinch method. The Cocks-Pinch method [16, 24] produces ordinary
elliptic curves having arbitrary embedding degree. The disadvantage of this
method is that it cannot produce curves of prime order.

Fix an embedding degree k > 0 and an integer D < 0. These integers need
to be small; typically, one chooses k < 50 and D < 107. The method proceeds
as follows.

1. Let n be a prime such that k divides n − 1 and D is a quadratic residue
modulo n.

2. Let ζ be a primitive k-th root of unity in F∗n. Such a ζ exists because k
divides n− 1.

3. Let t = ζ + 1 (mod n).

4. Let y = t−2√
D

(mod n).

5. Let p = (t2 −Dy2)/4.

If p is an integer and prime, then a specialized algorithm known as the complex
multiplication method will produce an elliptic curve defined over Fp having em-
bedding degree k with n points. The complex multiplication method requires a
discriminant as part of its input, and in this case the value of the discriminant is
the quantity D. Since the running time of the complex multiplication method is
roughly cubic in D, it is important to keep the value of D small. The resulting
elliptic curve will not have prime order, although for certain values of k there
are various optimizations which produce curves of nearly prime order [24], for
which the cofactor is relatively small.

A detailed discussion of the complex multiplication method is not possi-
ble within the scope of this work. Annex E of the ANSI X9.62 and X9.63

1.9. REFERENCES AND FURTHER READING 37

standards [2, 3] contains a complete implementation-level specification of the
algorithm.

1.9 References and further reading

For elliptic curve cryptography and pairing-based cryptography, the most com-
prehensive sources of mathematical and background information are the two
volumes of Blake, Seroussi, and Smart [10,11] and the Handbook of Elliptic and
Hyperelliptic Curve Cryptography, edited by Cohen and Frey [17]. Implementa-
tion topics are covered in [17] and in the Guide to Elliptic Curve Cryptography
by Hankerson, Menezes, and Vanstone [28]. The latter work also contains a
detailed treatment of elliptic curve-based cryptographic protocols.

38 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

Bibliography

[1] Michel Abdalla, Mihir Bellare, and Phillip Rogaway, The oracle Diffie-Hellman assump-
tions and an analysis of DHIES, Topics in cryptology—CT-RSA 2001 (San Francisco,
CA), Lecture Notes in Comput. Sci., vol. 2020, Springer, Berlin, 2001, pp. 143–158.

[2] ANSI Standards Committee X9, Public key cryptography for the financial services indus-
try: Key agreement and key transport using elliptic curve cryptography. ANSI X9.63-2001.

[3] , Public key cryptography for the financial services industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA). ANSI X9.62-2005.

[4] Adrian Antipa, Daniel Brown, Alfred Menezes, René Struik, and Scott Vanstone, Vali-
dation of elliptic curve public keys, Public key cryptography—PKC 2003, Lecture Notes
in Comput. Sci., vol. 2567, Springer, Berlin, 2002, pp. 211–223.

[5] R. Balasubramanian and Neal Koblitz, The improbability that an elliptic curve has subex-
ponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm, J. Cryp-
tology 11 (1998), no. 2, 141–145.

[6] Paulo S. L. M. Barreto, Steven D. Galbraith, Colm Ó’ hÉigeartaigh, and Michael Scott,
Efficient pairing computation on supersingular abelian varieties, Des. Codes Cryptogr.
42 (2007), no. 3, 239–271.

[7] Paulo S. L. M. Barreto and Michael Naehrig, Pairing-friendly elliptic curves of prime
order, Selected areas in cryptography, Lecture Notes in Comput. Sci., vol. 3897, Springer,
Berlin, 2006, pp. 319–331.

[8] Daniel J. Bernstein and Tanja Lange, Faster addition and doubling on elliptic curves,
Advances in cryptology—ASIACRYPT 2007 (Kuching, Malaysia), Lecture Notes in Com-
put. Sci., vol. 4833, Springer, Berlin, 2007, pp. 29–50.

[9] Ian F. Blake and Theodoulos Garefalakis, On the security of the digital signature algo-
rithm, Des. Codes Cryptogr. 26 (2002), no. 1-3, 87–96. In honour of Ronald C. Mullin.

[10] Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart, Elliptic curves in cryptography, Lon-
don Mathematical Society Lecture Note Series, vol. 265, Cambridge University Press,
Cambridge, 2000. Reprint of the 1999 original.

[11] (ed.), Advances in elliptic curve cryptography, London Mathematical Society Lec-
ture Note Series, vol. 317, Cambridge University Press, Cambridge, 2005.

[12] Dan Boneh and Matthew Franklin, Identity-based encryption from the Weil pairing,
SIAM J. Comput. 32 (2003), no. 3, 586–615 (electronic).

[13] Dan Boneh, Ben Lynn, and Hovav Shacham, Short signatures from the Weil pairing, J.
Cryptology 17 (2004), no. 4, 297–319.

[14] David Cash, Eike Kiltz, and Victor Shoup, The twin Diffie-Hellman problem and appli-
cations, Advances in cryptology—EUROCRYPT 2008 (Istanbul, Turkey), Lecture Notes
in Comput. Sci., vol. 4965, Springer, Berlin, 2008, pp. 127–145.

[15] Certicom Corp., Certicom ECC Challenge, November 1997. http://www.certicom.com/
index.php/the-certicom-ecc-challenge.

39

http://www.certicom.com/index.php/the-certicom-ecc-challenge
http://www.certicom.com/index.php/the-certicom-ecc-challenge

40 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

[16] Clifford C. Cocks and Richard G. E. Pinch, Identity-based cryptosystems based on the
Weil pairing, 2001. Unpublished manuscript.

[17] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim
Nguyen, and Frederik Vercauteren (eds.), Handbook of elliptic and hyperelliptic curve
cryptography, Discrete Mathematics and its Applications (Boca Raton), Chapman &
Hall/CRC, Boca Raton, FL, 2006.

[18] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers, A secure and optimally
efficient multi-authority election scheme, Advances in cryptology—EUROCRYPT ’97
(Konstanz), Lecture Notes in Comput. Sci., vol. 1233, Springer, Berlin, 1997, pp. 103–
118.

[19] Whitfield Diffie and Martin E. Hellman, New directions in cryptography, IEEE Trans.
Information Theory IT-22 (1976), no. 6, 644–654.

[20] Vassil Dimitrov, Laurent Imbert, and Pradeep K. Mishra, The double-base number system
and its application to elliptic curve cryptography, Math. Comp. 77 (2008), no. 262, 1075–
1104.

[21] Danny Dolev, Cynthia Dwork, and Moni Naor, Nonmalleable cryptography, SIAM J.
Comput. 30 (2000), no. 2, 391–437 (electronic).

[22] Taher ElGamal, A public key cryptosystem and a signature scheme based on discrete log-
arithms, Advances in cryptology (Santa Barbara, Calif., 1984), Lecture Notes in Comput.
Sci., vol. 196, Springer, Berlin, 1985, pp. 10–18.

[23] Mireille Fouquet and François Morain, Isogeny volcanoes and the SEA algorithm, Algo-
rithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer,
Berlin, 2002, pp. 276–291.

[24] David Freeman, Micahel Scott, and Edlyn Teske, A taxonomy of pairing-friendly elliptic
curves, Cryptology ePrint Archive: Report 2006/372, 2006. http://eprint.iacr.org/

2006/372.

[25] Gerhard Frey, Michael Müller, and Hans-Georg Rück, The Tate pairing and the discrete
logarithm applied to elliptic curve cryptosystems, IEEE Trans. Inform. Theory 45 (1999),
no. 5, 1717–1719.

[26] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart, Pairings for cryptogra-
phers, Discrete Appl. Math. 156 (2008), no. 16, 3113–3121.

[27] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone, Faster point multiplication
on elliptic curves with efficient endomorphisms, Advances in cryptology—CRYPTO 2001
(Santa Barbara, CA), Lecture Notes in Comput. Sci., vol. 2139, Springer, Berlin, 2001,
pp. 190–200.

[28] Darrel Hankerson, Alfred Menezes, and Scott Vanstone, Guide to elliptic curve cryptog-
raphy, Springer Professional Computing, Springer-Verlag, New York, 2004.

[29] Florian Hess, Nigel P. Smart, and Frederik Vercauteren, The eta pairing revisited, IEEE
Trans. Inform. Theory 52 (2006), no. 10, 4595–4602.

[30] Don B. Johnson and Alfred J. Menezes, Elliptic curve DSA (ECSDA): an enhanced
DSA, SSYM’98: Proceedings of the 7th conference on USENIX Security Symposium
(San Antonio, TX, 1998), USENIX Security Symposium, vol. 7, USENIX Association,
Berkeley, CA, USA, 1998, pp. 13–13.

[31] Don B. Johnson, Alfred J. Menezes, and Scott A. Vanstone, The elliptic curve digital
signature algorithm (ECDSA), Intern. J. of Information Security 1 (2001), 36–63.

[32] Antoine Joux, The Weil and Tate pairings as building blocks for public key cryptosystems,
Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369,
Springer, Berlin, 2002, pp. 20–32.

[33] , A one round protocol for tripartite Diffie-Hellman, J. Cryptology 17 (2004),
no. 4, 263–276.

http://eprint.iacr.org/2006/372
http://eprint.iacr.org/2006/372

1.9. REFERENCES AND FURTHER READING 41

[34] Antoine Joux, Reynald Lercier, Nigel Smart, and Frederik Vercauteren, The number field
sieve in the medium prime case, Advances in cryptology—CRYPTO 2006, Lecture Notes
in Comput. Sci., vol. 4117, Springer, Berlin, 2006, pp. 326–344.

[35] H. W. Lenstra Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987),
no. 3, 649–673.

[36] Reynald Lercier and François Morain, Counting the number of points on elliptic curves
over finite fields: strategies and performances, Advances in cryptology—EUROCRYPT
’95 (Saint-Malo, 1995), Lecture Notes in Comput. Sci., vol. 921, Springer, Berlin, 1995,
pp. 79–94.

[37] Ben Lynn, The Pairing-Based Cryptography Library. http://crypto.stanford.edu/

pbc/.

[38] Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone, Reducing elliptic curve
logarithms to logarithms in a finite field, IEEE Trans. Inform. Theory 39 (1993), no. 5,
1639–1646.

[39] Victor S. Miller, The Weil pairing, and its efficient calculation, J. Cryptology 17 (2004),
no. 4, 235–261.

[40] Atsuko Miyaji, Masaki Nakabayashi, and Shunzo Takano, New explicit conditions of ellip-
tic curve traces for FR-reduction, IEICE Transactions on Fundamentals E84-A (2001),
no. 5, 1234-1243.

[41] F. Morain and J. Olivos, Speeding up the computations on an elliptic curve using
addition-subtraction chains, RAIRO Inform. Théor. Appl. 24 (1990), no. 6, 531–543
(English, with French summary).

[42] National Institute of Standards and Technology, Secure Hash Standard (SHS), Techni-
cal Report FIPS PUB 180–2, August 2002. http://csrc.nist.gov/publications/fips/
fips180-2/fips180-2withchangenotice.pdf.

[43] , Digital Signature Standard (DSS), Technical Report FIPS PUB 186–2, January
2000. http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf.

[44] Stephen C. Pohlig and Martin E. Hellman, An improved algorithm for computing loga-
rithms over GF(p) and its cryptographic significance, IEEE Trans. Information Theory
IT-24 (1978), no. 1, 106–110.

[45] J. M. Pollard, Monte Carlo methods for index computation (mod p), Math. Comp. 32
(1978), no. 143, 918–924.

[46] Takakazu Satoh, The canonical lift of an ordinary elliptic curve over a finite field and
its point counting, J. Ramanujan Math. Soc. 15 (2000), no. 4, 247–270.

[47] René Schoof, Elliptic curves over finite fields and the computation of square roots mod
p, Math. Comp. 44 (1985), no. 170, 483–494.

[48] Gadiel Seroussi, Compression and decompression of elliptic curve data points, June 26,
2001. U.S. Patent 6,252,960.

[49] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics,
vol. 106, Springer-Verlag, New York, 1986.

[50] Eric R. Verheul, Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems, J. Cryptology 17 (2004), no. 4, 277–296.

http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

Index

ANSI X9.62 standard, 12, 15, 17, 36
ANSI X9.63 standard, 14, 17, 37

Barreto-Naehrig curves, 22, 24, 35
example, 22

BDH, 18
Bilinear Diffie-Hellman, 18
bilinear group pair, see pairings
bilinear pairings, see pairings
BLS, 20
Boneh-Franklin IBE, 19
Boneh-Lynn-Shacham, 20

Certicom ECC challenge, 10, 22
characteristic

of a field, 5
co-Diffie-Hellman (co-DH), 20
Cocks-Pinch method, 24, 36
cofactor, 21
complex multiplication, 36
cryptographic pairings, see pairings

degree
of a divisor, 25

Diffie-Hellman, 3
tripartite, 19

Digital Signature Algorithm, see DSA
discrete logarithms

elliptic curves, 5
discrete logarithms, 4, 23

finite fields, 4
index calculus, 4, 23
Pollard rho, 4, 23

distortion map, 35
divisor

degree, 25
example, 26

linear equivalence, 26
principal, 25
Riemann-Roch, 27

divisors, 24, 28
double and add, 10

example, 10
double-base number systems, 10
DSA, 15

ECDSA, 12, 15, 20
example, 16

ECIES, 12, 13, 14
Edwards curves, 10
electronic voting, 13
ElGamal, 13

example, 13
hashed, 14

ElGamal encryption, 12
elliptic curve

example, 6
Riemann Roch, 27

elliptic curves, 6
cofactor, 21
curve selection, 11
distortion map, 35
divisors, 24, 28
embedding degree, 17, 21
example, 8, 10, 13, 16, 21, 22
Frey-Rück reduction, 22
group law, 7

algebraic definition, 7
associativity, 8
geometric definition, 7

in characteristic two, 9
MOV reduction, 17, 22

supersingular curves, 23
ordinary curves, 35

42

INDEX 43

point at infinity, 6
point compression, 12
point counting, 11
points of prime order, 12
protocols, 12
supersingular curves, 21, 23, 33
torsion points, 28
Weierstrass cubic, 6

embedding degree, 17, 21
optimal value, 23

finite fields, 5
example, 5

Frey-Rück reduction, 22

Galois fields, see finite fields

Hasse-Weil bound, 11

IBE, 19
Identity based encryption, 19
index calculus, 4, 23

linear equivalence, 26

malleable, 13
Miller’s algorithm, 32
MNT curves, 24
modified pairing, 35
MOV reduction, 17, 22

supersingular curves, 23

NIST FIPS 186-2, 11
non-adjacent form, 10

order, 25
ordinary curves, 35

textbf, 24

pairing based cryptography, 17
BLS, 20
IBE, 19
protocols, 19
short signatures, 20

pairings
Barreto-Naehrig curves, 22, 24
cofactor, 21

definition, 17
distortion map, 35
embedding degree, 17, 21, 33

optimal value, 23
example, 21, 22
Frey-Rück reduction, 22
implementation, 24
Miller’s algorithm, 32
MNT curves, 24
modified pairing, 35
MOV reduction, 17, 22

supersingular curves, 23
ordinary curves, 35

textbf, 24
pairing-friendly curves, 33
protocols, 19
supersingular curves, 33
Tate pairing, 30

example, 22
Type 1, 18, 21

example, 21
supersingular curves, 21, 23, 33

Type 2, 18
Type 3, 18

example, 22
Weil pairing, 27

example, 21
Weil reciprocity, 29

Pohlig-Hellman algorithm, 11
point at infinity, 6
point compression, 12
point counting, 11
Pollard rho, 4, 23
principal divisor, 25
Public key validation, 16

rational function, 25
Riemann-Roch, 27

scalar multiplication, 10
Secure Hash Algorithm, see SHA-1
SHA-1, 15, 16
short signatures, 20
square and multiply, 10

example, 10
supersingular curve, 21

44 INDEX

supersingular curves, 23, 33
distortion map, 35

Tate pairing, 22, 30
algorithm, 32
definition, 30
modified, 35

Tate proto-pairing, 30
torsion points, 28
Tripartite key agreement, 19
types of pairings, 18

Weierstrass cubic, 6
Weil pairing, 21, 27

algorithm, 32
definition, 28
modified, 35
properties, 29

Weil reciprocity, 29

	Elliptic curve cryptography
	Motivation
	Groups in cryptography
	Discrete logarithms

	Definitions
	Finite fields
	Elliptic curves
	Group law
	Elliptic curves in characteristic 2

	Implementation issues
	Scalar multiplication
	Curve selection
	Point representations
	Generating points of prime order

	ECC protocols
	Public key encryption
	Digital signatures
	Public key validation

	Pairing based cryptography
	Definitions
	Pairing-based protocols

	Properties of pairings
	Embedding degree
	MOV reduction
	Overview of pairing families

	Implementations of pairings
	Divisors
	Weil pairing
	Tate pairing
	Miller's algorithm

	Pairing-friendly curves
	Supersingular curves
	Ordinary curves

	References and further reading

