
Publicly Verifiable Secret Sharing for
Cloud-based Key Management

Roy D’Souza1, David Jao2,?, Ilya Mironov1,3, and Omkant Pandey1,??

1 Microsoft Corporation, Redmond WA, USA
{royd,omkantp}@microsoft.com

2 University of Waterloo, Waterloo ON, Canada
djao@math.uwaterloo.ca

3 Microsoft Research Silicon Valley Center, Mountain View CA, USA
mironov@microsoft.com

Abstract. Running the key-management service of cryptographic sys-
tems in the cloud is an attractive cost saving proposition. Supporting
key-recovery is an essential component of every key-management service.
We observe that to verifiably support key-recovery in a public cloud, it
is essential to use publicly verifiable secret-sharing (PVSS) schemes. In
addition, a holistic approach to security must be taken by requiring that
running the key-management service in the (untrusted) cloud does not
violate the security of the cryptographic system at hand.
This paper takes such a holistic approach for the case of public-key en-
cryption which is one of the most basic cryptographic tasks. The ap-
proach boils down to formalizing the security of public-key encryption in
the presence of PVSS. We present such a formalization and observe that
the PVSS scheme of Stadler [29] can be shown to satisfy our definition,
albeit in the Random Oracle Model.
We construct a new scheme based on pairings which is much more effi-
cient than Stadler’s scheme. Our scheme is noninteractive and can sup-
port any monotone access structure. In addition, it is proven secure in
the standard model under the Bilinear Diffie-Hellman (BDH) assump-
tion. Interestingly, our PVSS scheme is actually the first non-interactive
scheme proven secure in the standard model; all previous non-interactive
PVSS schemes assume the existence of a Random Oracle. Our scheme is
simple and efficient; an implementation of our scheme demonstrates that
our scheme compares well with the current fastest known PVSS schemes.

1 Introduction

Today, there is a huge emphasis on cloud computing. The “cloud” can be thought
of as an infrastructure which is available to everyone at all times and provides
reliable data storage and computational power at low cost. More and more appli-
cations are now moved from private machines to run in clouds to reduce capital

? Partially supported by NSERC
?? Also affiliated with Microsoft Research India, Bangalore, India

2 Roy D’Souza, David Jao, Ilya Mironov, and Omkant Pandey

and operational expense. Leveraging the cloud infrastructure is an increasingly
popular value proposition for IT companies [10, 17]. The cloud can either be
operated privately by a trusted party, or publicly by an untrusted third party.
In this paper, we will be concerned only with public clouds which cannot be
trusted for cryptographic purposes.

Key-management is an essential component of systems that deploy crypto-
graphic techniques. Since availability and reliability are two crucial requirements
of a good key-management service, running it in the cloud is a natural proposi-
tion for cost reduction [18]. In this work, we shall focus on one of the most basic
cryptographic tasks: public-key encryption. A similar formal treatment can be
easily provided for other cryptographic tasks as well such as signature schemes.

Suppose that (PK ,SK) is the public and secret key-pair of an employee U of
a business B. The key-management service, run by the business (administrator)
B, has two fundamental tasks: securely store SK from where only U can access
SK (for example, by providing his passphrase); and support key-recovery. That
is, if U loses SK (or his passphrase), it should be possible for some authorized
party (such as U ’s manager) to recover SK for U . Typically, who can recover
SK for U is determined by an access policy A which represents authorized sets
of parties which must collude to recover SK for U . This set may or may not
include the system administrator B. At the time of registration when (PK ,SK)
are generated for U , strict guidelines must be followed to verifiably ensure that
SK can indeed be recovered as defined by the policy A. Failure to recover SK in
legitimate circumstances can result in data loss which can lead to severe financial
damage and perhaps legal consequences.

We would like to bring attention to a subtle yet crucial point here. The
verification steps to ensure that key-recovery can indeed be performed when
needed, is usually performed by an automatized procedure controlled by the
system administrator B. Such a process usually needs one-time access to the
generated key SK to successfully complete the verification task. As a result, in
principle, administrator B might be able to look at SK even if ideally he should
not be allowed to do so. The usual “fix” around this problem is that B is bound
by a legal contract trusted entity. Therefore, it is not considered the part of the
adversary trying to break the security of the encryption scheme. That is, in the
mathematical formalizations of security of PKE (such as the IND-CPA game),
B is not modeled as a separate entity.

However, when the key-management service is moved to the cloud, this be-
comes a severe problem. The cloud, unlike B, must be treated as an untrusted
entity and hence the adversary. There is really no alternative but to use crypto-
graphic methods to ensure that key-recovery can be successfully performed when
needed. Therefore, we need a cryptographic mechanism which ensures that the
cloud must be able to store SK in some “encrypted” form (from where U can
access it), verify that SK can be successfully recovered by authorized set of par-
ties as defined by the policy A, and yet be unable to break the IND-CPA security
of messages encrypted under PK .

Publicly Verifiable Secret Sharing for Cloud-based Key Management 3

Securely storing SK in “encrypted” form in the cloud so that it does not
compromise IND-CPA security of encrypted messages is quite easy. Simply use
an appropriate Key Encapsulation Mechanism (KEM) [28] to encrypt SK under
U ’s password (or some other appropriate key stored, e.g., in U ’s employee smart-
card). This allows U to access SK , and security can be argued using standard
techniques almost automatically (see [28]). In this paper, we focus on the key-
recovery part: how to allow the cloud to (non-interactively) verify that SK can
be recovered by the legitimate parties and yet ensure that allowing the cloud to
do so does not compromise the IND-CPA security of the associated public-key
encryption scheme. The cryptographic tool which allows such a public verifi-
cation is known as publicly verifiable secret-sharing (PVSS) scheme. However,
plain PVSS schemes do not explicitly consider supporting public-key encryption.
Rather, their goal is to simply ensure that there is a unique and well defined
secret value s that will be recovered by (all) authorized sets of parties. It is not
explicitly required that s = SK where SK is a legitimate secret-key for PK . This
is because such a guarantee is not really needed in cryptographic tasks which
use PVSS, e.g., secure function evaluation [9, 11], electronic voting applications
[25], and so on. In our context, however, we need to ensure that s = SK without
compromising IND-CPA security of messages encrypted under PK .

To do this, we first present a formal security model for public-key encryption
schemes that support publicly verifiable secret-sharing schemes. We then observe
that even though traditional PVSS schemes do not satisfy all our requirements,
the scheme of Stadler [29] can be shown to satisfy these requirements in the Ran-
dom Oracle Model [4]. The public-key encryption scheme supported by Stadler’s
construction is the ElGamal cryptosystem [12]. The scheme, however, relies on
parallel repetition of zero-knowledge proofs for proving relations about double
discrete logarithms [29]. Such parallel repetitions are necessary to reduce the
soundness error to an acceptable level, and makes the scheme quite inefficient in
practice. Indeed, this was later addressed by Schoenmakers [25] who presented a
much more efficient scheme based on simple discrete logarithms (as opposed to
the double discrete logarithms). However, Schoenmakers’ scheme is only a plain
PVSS, i.e., it does not support a public-key encryption scheme.

To address this problem, we construct a new PVSS scheme and a corre-
sponding PKE scheme using pairing-based techniques [16, 8]. Our construction
is highly efficient: asymptotically, it is optimal just like Schoenmakers’ construc-
tion; in addition, our implementation shows that even in practice, despite the
use of pairings, the system performs very well when compared to Schoenmakers
system (which, to the best of our knowledge, is the fastest known PVSS). The
implementation details, and our test results can be found in Section 4.

Our construction has an added theoretical benefit. It is proven secure in the
standard model, under the standard bilinear Diffie-Hellman (BDH) assumption.
All previous (non-interactive) PVSS constructions assume the existence of a
Random Oracle. While not our main motivation, this actually resolves an open
question in the area of publicly-verifiable secret-sharing schemes: ours is the first

4 Roy D’Souza, David Jao, Ilya Mironov, and Omkant Pandey

construction of a non-interactive PVSS scheme proven secure in the standard
model under standard assumptions.

Related Work. To our knowledge, a formal treatment of key-management from
the point of view of running key-management services on untrusted computing
facilities (such as the cloud) has not previously appeared. Indeed, our work also
only focuses on one of the crucial aspects of key-recovery, and does not aim to
explicitly provide a full treatment to key-management in the cloud.

Nevertheless, we have been able to focus on the aspect of key-recovery which
is common to almost all good key-management services. Our work relies heavily
on the techniques of secret-sharing schemes, in particular the standard exten-
sion of Blakley-Shamir secret-sharing scheme [5, 27] to access trees [14, 24]. The
idea of verifiability in secret-sharing schemes (VSS) was introduced by Chor et
al. [9]. Efficient non-interactive versions were presented by Feldman [11], where
verifiability of the secret is information-theoretic but secrecy relies on computa-
tional assumptions, and by Pedersen [23], where verifiability is only guaranteed
computationally while secrecy is unconditional. Publicly verifiable secret-sharing
schemes most relevant to our work are those of Stadler [29] and Schoenmakers
[25]; both schemes hide the secret computationally.

The idea of using PVSS schemes to enforce verifiability of shares for a secret
key is not new in its own, and has been used in a closely related goal of verifiable
key-escrow. Key-escrow were initially designed with the purpose of allowing the
government to recover DES keys to monitor suspected activities [21]. This was
followed by extensive research considering various issues to partial key-escrow
[20], verifiability in key-escrow [3, 19], and so on (see [3] for a good exposure). In
summary, adding verifiability to the key-escrow problem naturally brought the
usage of PVSS schemes and variations of the same were developed as needed. We
note that the focus of these works is different, and as such a holistic approach
to security of PKE was never considered by any of these works. In addition, our
scheme is the first non-interactive PVSS proven secure in the standard model.

2 Preliminaries

We assume familiarity with public key encryption scheme [13]. Unless stated
otherwise, κ ∈ N will denote the security parameter. All parties, and mechanisms
are assumed to have the security parameter as an implicit input in the form 1κ,
and run in time polynomial in κ. A function is called negligible if it approaches
zero faster than the inverse of every polynomial.

2.1 Definitions

We first recall the definition of an Access Structure involving parties P1, . . . , Pn.

Definition 2.1 (Access Structure [2]) Let {P1, . . . , Pn} be a set of parties.
A collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C then

Publicly Verifiable Secret Sharing for Cloud-based Key Management 5

C ∈ A. An access structure (resp., monotone access structure) is a collection
(resp., monotone collection) A of non-empty subsets of {P1, . . . , Pn}; i.e., A ⊆
2{P1,...,Pn} \ {∅}. The sets in A are called authorized sets, and the sets not in A
are called unauthorized sets.

In our context, these parties will receive encrypted shares of a secret key. Each
party Pi will be defined by its public parameters PP i to be fixed by the scheme.
Description of A, defined over Pi, then includes the public parameters PP i of
relevant parties Pi. Unless stated otherwise, we shall only deal with monotone
access structures in this paper.

Let PKE = {K, E ,D} be a public key encryption scheme. We assume that
there exists an efficient algorithm Valid such that Valid(PK ,SK) = 1 if and
only if (PK ,SK) is in the range of K(1κ) for some κ ∈ N.

We now formally define PKE schemes that support publicly verifiable secret
sharing (PVSS).

PKE Supporting Public-VSS A public-key encryption scheme supporting
publicly verifiable secret sharing for an access structure A consists of seven
algorithms {K, E ,D, Setup, GenShare, Verify, Reconst} such that the triplet
PKE = {K, E ,D} is an (ordinary) public-key encryption scheme and:

Setup(1κ, n). This is a randomized algorithm. For every i ∈ [n], it computes a
public-value PP i (defining the party Pi) and a corresponding secret-value SK i.
It outputs the vector of pairs {(PP i,SK i), . . . , (PPn,SKn)}.

GenShare(PK ,SK ,A). This is a randomized algorithm for generating encrypted
shares. It takes as input a public-secret key-pair (PK ,SK) and an access struc-
ture A; it outputs a string π. Recall that the description of A includes public
parameters PP j of relevant parties.

Verify(PK , π,A). This is a deterministic (verification) algorithm. On input
(PK , π,A), the algorithm either outputs 1 or 0. We require that for every κ ∈ N
and for every (valid4) A:

Pr [Verify(PK , π,A) = 1 : (PK ,SK)← K(1κ) ∧ π ← GenShare(PK ,SK ,A)]
= 1.

This requirement is known as the correctness condition.

Reconst(PK , π,A,SKS). This is a deterministic algorithm for reconstructing
the secret key SK from (encrypted shares in) π. Formally, let S ∈ A be an
authorized set, and let SKS = {SK j}j:Pj∈S be the set of secret keys of parties
Pj ∈ S. Algorithm Reconst takes as input (PK , π,A,SKS) and outputs a string
SK ′.
4 A is defined over Pi, which in turn are defined over PP i; A is valid if it satisfies

Definition 2.1 and every PP i is an output of Setup(1κ, n).

6 Roy D’Souza, David Jao, Ilya Mironov, and Omkant Pandey

Informally, we require that the no polynomial time adversary can produce
a (PK ∗, π∗) which will be accepted by Verify but Reconst will fail to recover
a valid secret key SK ′ for PK ∗. This requirement is known as the soundness
condition. The formal definition follows.

Soundness. Formally, we require that there exists a negligible function negl(·)
such that for every valid A, every S ∈ A, every non-uniform PPT algorithm U∗,
and every sufficiently large κ ∈ N:

Pr
[

(PK ∗, π∗)← U∗(A); SK ′ ← Reconst(PK ∗, π∗,A,SKS);
Verify(PK ∗, π∗,A) = 1

∧
Valid(PK ∗,SK ′) = 0

]
≤ negl(κ).

Security Game for PKE supporting Public-VSS The security is defined
by considering a game played between the challenger and the adversary. We
shall give the adversary flexibility to choose the public parameters of the parties
it wishes to corrupt. However, we shall only consider static corruptions where
the adversary chooses these parameters before the challenge phase. The game
proceeds in the following phases:

Setup. The challenger runs the Setup algorithm to obtain system parameters
{PP i,SK i}ni=1; it then samples (“user”) keys (PK ,SK) ← K(1κ). Public
parameters PK and {PP i}ni=1 are sent to the adversary.

Corruption. The adversary “corrupts” a set of parties by sending the following
to the challenger: a set C ⊂ [n] of indices and a public parameter PP∗i for
every i ∈ C. The new public parameters for the system are: PK , {PP∗i }i∈C∪
{PP i}i∈[n]\C .

Phase 1. The adversary sends a (valid) access structure A∗ to the challenger
such that set C of corrupted parties does not satisfy A∗; that is, C /∈ A∗.
The challenger runs the GenShare algorithm on inputs (PK ,SK ,A∗) and
sends the resulting output to the adversary.

Challenge. The adversary sends two distinct and equal length messages m0

and m1. The challenger samples a random bit b and computes the challenge
ciphertext CT∗ ← EPK (mb). Adversary receives CT∗.

Phase 2. Phase 1 is repeated.
Guess. Adversary outputs a guess bit b′.

The advantage of an adversary in this game is defined to be Pr[b′ = b]− 1
2 .

Definition 2.2 A public-key encryption scheme supporting publicly verifiable
secret-sharing is said to be secure in the (static) corruption model if all (non-
uniform) polynomial time algorithms have at most a negligible advantage in the
security game.

2.2 Access Trees

We will consider access structures that are representable by a tree of threshold
gates. This is a very large class of access structures and have been used in

Publicly Verifiable Secret Sharing for Cloud-based Key Management 7

many previous works including attribute-based encryption and verifiable secret
sharing. To facilitate working with them, the basic framework of access trees is
recalled here.

Access Tree T . Let T be a tree representing an access structure. Each non-leaf
node of the tree represents a threshold gate, described by its children and a
threshold value. If numx is the number of children of a node x and kx is its
threshold value, then 0 ≤ kx ≤ numx When kx = 1, the threshold gate is an
OR gate and when kx = numx, it is an AND gate. Each leaf node x of the tree
is described by a party Pi and a threshold value kx.

To facilitate working with the access trees, we define a few functions. We
denote the parent of the node x in the tree by parent(x). The access tree T
defines an ordering between the children of every node. That is, the children
of a node x are numbered from 1 to numx. The function id(z) returns such a
number associated with the node z. (We assume that there is a publicly known
method to assign such index values so that they are unique for every node x).
Note that by definition, the leaf nodes do not have any children; instead they
are associated with a party in {P1, . . . , Pn}. If x is a leaf node, function id(x)
returns the index i ∈ [n] of the party associated with x.

Satisfying an Access Tree. Let T be an access tree with root r. Denote by Tx the
subtree of T rooted at the node x. Hence T is the same as Tr. If a set γ ⊆ [n] of
indices satisfies the access tree Tx, we denote it as Tx(γ) = 1. We compute Tx(γ)
recursively as follows. If x is a non-leaf node, evaluate Tx′(γ) for all children x′

of node x. Tx(γ) returns 1 if and only if at least kx children return 1. If x is a
leaf node, then Tx(γ) returns 1 if and only if id(x) ∈ γ.

2.3 Cryptographic Assumptions

Bilinear Diffie-Hellman (BDH) Assumption. We assume familiarity with bilin-
ear maps (see [16, 8]). Let G1 be bilinear group of prime order p and genera-
tor g. In addition, let e : G1 × G1 → G2 be the bilinear map with the target
group G2. Let a, b, c, d ∈ Zp be chosen at random and g be a generator of G1.
The BDH assumption [6] states that no (non-uniform) probabilistic polynomial
time algorithm B can distinguish the tuple (ga, gb, gc, e(g, g)abc) from the tuple
(ga, gb, gc, e(g, g)d) with more than a negligible advantage. Here, the advantage
of B is defined by:∣∣Pr

[
B(ga, gb, gc, e(g, g)abc) = 1

]
− Pr

[
B(ga, gb, gc, e(g, g)d) = 1

]∣∣ .
3 An Efficient Scheme without Random Oracles

In this section we shall present a public-key encryption scheme which will support
public-VSS for access trees. This construction is based on bilinear pairings, and
is proven secure in the standard model under the (standard) BDH assumption.

8 Roy D’Souza, David Jao, Ilya Mironov, and Omkant Pandey

As noted before, we will first present an encryption scheme, and then present a
publicly verifiable secret sharing for the specific purpose of sharing the decryp-
tion keys of this encryption scheme. While our encryption schemes is new, the
secret-sharing scheme will follow standard approaches. Nevertheless, since this
is the first time, for completeness we will present the secret sharing part in full
detail.

Let G1 be a bilinear group of prime order p, and let g be a randomly chosen
generator of G1. In addition, let e : G1×G1 → G2 denote the bilinear map with
target group G2. Note that the security parameter κ determines the size of the
groups, and parameters g,G1,G2, p are available to all parties.

The Encryption Scheme. Our new encryption scheme, PKE = {K, E ,D}, is a
variant of the ElGamal encryption scheme. It encrypts messages in G2. The
description can be found in Figure 1.

Key Generation K: h
$← G1. SK = h, and PK = e(g, h).

Encryption EPK (m ∈ G2): R
$← Zp, output: 〈gR,m ·PKR〉.

Decryption D(〈C1, C2〉,SK): Output C2/e(C1,SK).

Fig. 1. Encryption scheme PKE.

Observe that for correctly generated ciphertexts 〈C1, C2〉: C2/e(C1,SK) = m ·
PKR/e(gR, h) = m, since the denominator e(gR, h) = e(g, h)R = PKR. Also
observe that corresponding to every public key, there is a unique secret key, and
it is possible to efficiently test if a proposed secret key SK ∗ is valid for a given
public PK by testing that: e(g,SK ∗) = PK .

Supporting Public-VSS Property for Access Trees. We complete the description
of the remaining four algorithms {Setup, GenShare, Verify, Reconst} in our sys-
tem. Recall that our access structure A is represented by an access tree T .

For i ∈ Zp and a set S consisting of elements in Zp, we define the Lagrange
coefficient ∆i,S(X) =

∏
j∈S\{i}

X−i
i−j .

Setup(1κ, n). For every i ∈ [n]: sample yi
$← Zp; output SK i = yi and PP i =

gyi .

GenShare(PK ,SK , T). Recall that SK = h and PK = e(g, h). Let s ∈ Zp such
that h = gs. For clarity, we break the algorithm in three steps.

1. Define polynomials: Choose a polynomial qx for every node x (including the
leaves) in the T . These polynomials are chosen in the following way in a
top-down manner, starting from the root node r.

Publicly Verifiable Secret Sharing for Cloud-based Key Management 9

For each node x in the tree, set the degree dx of the polynomial qx to be
one less than the threshold value kx of that node; that is, dx = kx− 1. Now,
for the root node r, set qr(0) = s. That is, the constant term of qr is set
to s. Choose dr more points randomly to completely fix the polynomial qr.
For every other node x, set qx(0) = qparent(x)(id(x)); i.e., the constant term
of qx is set to qparent(x)(id(x)). Choose the remaining dx points randomly to
completely define the polynomial qx.

2. Encapsulate shares: For every leaf node x, the share of node x is defined by:
λx = gqx(id(x)). This value can be computed by using polynomial interpola-
tion since all points are known (recall that id(x) returns the index i ∈ [n] of
the party Pi at the leaf node x). Now, choose a random value Rx ∈ Zp; the
encapsulation of λx is 〈Bx, Cx〉, where:

Bx = gRx , Cx = λx · PPRx
id(x).

Observe that the encapsulation of λx is simply an ElGamal encryption of λx
under the public parameter PP id(x).

3. Proof : Finally, to enable public verification, the algorithm will “commit” to
polynomials of every node x in the target group G2. For every node x and
every 0 ≤ i ≤ dx, define the following values:

Ax,i = gqx(i) and Âx,i = e(g,Ax,i) = e(g, g)qx(i).

The output string π consists of the following:

1. For every node x (including the leaf nodes), the “committed polynomial”:
{Âx,i}dxi=1;

2. For every leaf node, the encapsulations: 〈Bx, Cx〉.

Verify(PK , π, T). The algorithms proceeds in following steps:

1. For every node x in T , parse π to obtain the committed points {Âx,i}dxi=1 of
polynomial qx. For every leaf node x in T , parse π to obtain the encapsula-
tions 〈Bx, Cx〉 of secrets λx. (Note that λx is not publicly known).

2. For the root node, verify that Âr,0 = PK . For every other node x, verify
that:

Âx,0 =
dz∏
i=0

(
Âz,i

)∆i,γz (w)

, (1)

where z = parent(x), w = id(x), and the set γz = {0, 1, . . . , dz}.
3. For every leaf node x, verify that:

Âx,0 =
e(g, Cx)

e(Bx,PP i)
, (2)

where i = id(x).

10 Roy D’Souza, David Jao, Ilya Mironov, and Omkant Pandey

If all tests pass, output 1; otherwise output 0. We quickly note that for correctly
generated values all tests do pass, because:

RHS of (1) =
dz∏
i=0

(
Âz,i

)∆i,γz (w)

= e(g, g)
Pdz
i=0 qz(i)·∆i,γz (w)

= e(g, g)qz(w) = e(g, g)qx(0) = Âx,0,

RHS of (2) =
e(g, Cx)

e(Bx,PP i)
=
e(g, λx · PPRx

i)
e(gRx ,PP i)

=
e(g, λx) · e(g,PPRx

i)
e(g,PP i)Rx

= e(g, λx) = Âx,0.

Reconst(PK , π, T ,SKS). Informally, the reconstruction procedure works as fol-
lows. First “decrypt” the shares λx for relevant leaf nodes. Then, apply the stan-
dard polynomial interpolation in the exponent recursively (e.g., see [24, 14]). The
formal description follows.

For every node x in T , parse π to obtain the committed coefficients {Âx,i}dxi=1

of polynomial qx. For every leaf node x in T , parse π to obtain the encapsulations
〈Bx, Cx〉 of secrets λx.

Now, we define a recursive algorithm DecryptNode(π,SKS , x) that takes as
input the string π and the secret key set SKS (we assume that S is included in
SKS), and a node x in the tree. It outputs an element in G1 or ⊥.

Let i = id(x). If x is a leaf node then let yi ∈ SKS be the secret key
corresponding to PP i. The algorithm is defined as follows: if i ∈ S,

DecryptNode(π,SKS , x) =
Cx
Byix

=
λx · PPRx

i

gRx·yi
= λx = gqx(0).

If i /∈ S, then we define DecryptNode(π,SKS , x) = ⊥.
We now consider the case when x is not a leaf node. In this case, the algorithm

DecryptNode(π,SKS , x) proceeds as follows: for all nodes z that are children of
x, it calls DecryptNode(π,SKS , z) and stores the output as Fz. Let γx be an
arbitrary kx-sized set of child nodes z such that Fz 6= ⊥. If no such set exists
then the node was not satisfied and the algorithm returns ⊥.

Otherwise, compute:

Fx =
∏
z∈γx

F
∆
i,γ
′
x
(0)

z , where
{
i = id(z)
γ
′

x = {id(z) : z ∈ γx}

=
∏
z∈γx

g
qz(0)·∆i,γ′x

(0)

=
∏
z∈γx

g
qparent(z)(id(z))·∆

i,γ
′
x
(0)

(by construction)

=
∏
z∈γx

g
qx(i)·∆i,γ′x

(0)

= gqx(0) (using polynomial interpolation)

Publicly Verifiable Secret Sharing for Cloud-based Key Management 11

and return the result.
Having defined the recursive algorithm DecryptNode, our reconstruction al-

gorithm Reconst simply calls the function DecryptNode on the root node r of
the tree with inputs (π,SKS). Observe that: DecryptNode(π,SKS , r) = gqr(0) =
gs = SK if and only if T (S) = 1 (as desired).

Efficiency. Note that for ease of exposition, we have defined the simplest form
of reconstruction algorithm. There are several optimizations possible. See the
discussion in [14] on how to minimize the number of exponentiations (ignoring
the pairing computations). Note that the Reconst algorithm does not perform
any pairing computations; the computation cost is thus dominated by number
of exponentiations.

On supporting every LSSS-realizable A. Our construction is only described for
access trees. However, it can be easily extended to suppose every access struc-
ture A which can be realized by a linear secret-sharing scheme (LSSS, see [2]).
Such access structures A are represented by a monotone span program. Our con-
struction will commit to the randomness of such secret-sharing scheme instead of
committing to the coefficients. The full construction can be obtained by following
the details of construction in Section A of [14].

4 System Implementation

Recall that our access structures are composed of a tree of threshold gates. For
the purposes of evaluating performance, it suffices to consider a single (k, n)-
threshold gate. For such a gate, it is easy to calculate that the theoretical cost
of our scheme is O(n)(T1 + T3) for GenShare, O(k2)T2 + O(n)T3 for Verify,
and O(k2 + n)T1 for Reconst, where T1, T2, and T3 are the costs of a G1-
exponentiation, a G2-exponentiation, and a pairing respectively. Hence, in terms
of asymptotic cost complexity, our scheme has performance similar to [25]. In
order to compare the performance of the two schemes in more detail, we imple-
mented the two schemes and measured their running times empirically.

Our implementation is based on Mike Scott’s MIRACL library [26]. For the
pairing, our protocol requires a type 1 (symmetric) cryptographic pairing. We
used the Tate pairing on supersingular elliptic curves over Fp of embedding
degree 2. Although other type 1 pairings lead to a sizable performance improve-
ment [1], we chose the Tate pairing implementation built into MIRACL because
it has the advantages of public availability and integration with the supporting
MIRACL API. We evaluated the performance of both schemes at the 80, 112,
128, and 256-bit security levels. Following the guidance of [22, Table 1], we used
corresponding group sizes of 160, 224, 256, and 512 bits, and field sizes of 1024,
2048, 3072, and 15360 bits respectively. For the pairing-based implementation,
the field size is the size of G2 in bits; the size of G1 in bits is half that of G2 (since
the embedding degree is 2). All tests were run on an AMD 2.4GHz Opteron in
64-bit mode.

12 Roy D’Souza, David Jao, Ilya Mironov, and Omkant Pandey

The results of our tests are presented in Appendix B. We observe that, in
general, the performance of the two schemes on GenShare is comparable. Our
scheme is slower for GenShare at the 256-bit security level because pairing oper-
ations over such large curves are slow. For Verify, our scheme is slower than [25]
for the smallest measured values of k and faster for the largest values. We expect
such a performance improvement in asymptotic terms since our scheme avoids
the double exponentiation step of [25, p. 154]. For Reconst, our scheme is slower
by about a factor of 2, in this case because group operations on large elliptic
curves are slow. As mentioned above, one possible strategy for improving per-
formance would be to use pairings on supersingular curves over fields of small
characteristic with larger embedding degrees [1]. We mention, however, that ex-
ecution of Reconst is normally needed only in unforeseen circumstances such as
the loss of a key, and will not be performed simultaneously for too many users.

5 Security Proof for Our Construction

In this section, we provide a full proof of security of our pairing based scheme.
First note that the proof of soundness (of the Reconst procedure) is straight-
forward. Further details can be found in Appendix A. We move on to prove the
security of encryption (in the presence of public-VSS). The security of our scheme
is proven by reduction to the BDH assumption. We show that if an adversary
can win the security game for PKE supporting Public-VSS with non-negligible
advantage, then one can construct a simulator to break the BDH assumption.

Theorem 5.1. If a polynomial time adversary A wins the security for PKE
scheme supporting publicly verifiable secret-sharing scheme, then there exists a
polynomial time simulator B to break the Bilinear Diffie-Hellman Assumption.

Proof. Suppose that A can succeed in the security game for PKE supporting
public-VSS with advantage ε. We construct a simulator B that succeeds in the
decisional BDH game with advantage ε/2 or more. The simulation proceeds as
follows.

We first let the challenger set the groups G1,G2 of prime order p with an
efficient bilinear map e and a generator g. The challenger flips a fair coin µ outside
the view of B. If µ = 0 the challenger sets (A,B,C ′, D) = (ga, gb, gc, e(g, g)abc);
otherwise, it sets (A,B,C ′, D) = (ga, gb, gc, e(g, g)d) for random (a, b, c, d). Now,
the simulator initiates the adversary A interacting with it through various phases
as follows.

Setup. B prepares the following values. First it sets PK = e(A,B) = e(g, g)ab.
Next, for every i ∈ [n], it chooses a random value βi ∈ Zp and sets PP i = Bβi =
gbβi . Adversary receives (PK , {PP i}i∈[n]).

Corruption. The adversary corrupts a set C ⊂ [n] of parties by fixing public
parameter PP∗i of its own choice for every i ∈ C. The new public parameters for
the system are: PK , {PP∗i }i∈C ∪ {PP i}i∈[n]\C .

Publicly Verifiable Secret Sharing for Cloud-based Key Management 13

Phase 1. The adversary sends an access tree T to the simulator such that T (C) =
0. The simulator needs to respond with a string π as its response to the public
VSS query. It proceeds as follows.

Let s = ab so that PK = e(g, g)s and yi = bβi so that PP i = gyi for every
i ∈ [n] \ C. The simulator first needs to define a polynomial qx of degree dx
for every node x. We define the following two procedures to be executed by the
B later: PolySat and PolyUnsat. These are recursive procedures, and append
values to the output string π (initially empty).

PolySat(Tx, C, δx) This procedure sets up the polynomials for all nodes of an
access sub-tree whose root node is satisfied by parties in C; that is Tx(C) = 1.
The inputs to the procedure are: the subtree Tx rooted at node x of T , the
set C, and an integer δx ∈ Zp.
The procedure starts by defining a polynomial qx for node x; it sets qx(0) =
δx. It then sets the remaining points of qx randomly to completely fix the
polynomial qx. For 0 ≤ i ≤ dx, values Âx,i = e(g, g)qx(i) are then appended
to π.
Now, for every child node x′ of x, we call PolySat(Tx′ , C, qx(id(x′))). This
fixes the polynomials for every node z in the access sub-tree Tx and appends
relevant values Âx,i to π. Note that by construction, all nodes satisfy the
constraint that: qz(0) = qparent(z)(id(z)).

PolyUnsat(Tx, C, e(g, g)δx) This procedure sets up the polynomials for all nodes
of an unsatisfied access sub-tree Tx; that is Tx(C) = 0. The inputs to the
procedure are: the subtree Tx rooted at node x of T , the set C, and an
element e(g, g)δx ∈ G2 where δx ∈ Zp.
It first defines a polynomial qx of degree dx for the root node x such that
qx(0) = δx. Since Tx(C) = 0, at most hx ≤ dx children of x are satisfied.
For each satisfied child x′ of x, the procedure chooses a random value δx′
and sets qx(id(x′)) = δx′ . It then fixes the remaining dx − hx points of qx
randomly to completely fix the polynomial. Let γx be the set of these dx
points where the value of the polynomial is chosen. That is, except for i = 0,
value of q(i) is known to B for every i ∈ γx.
Now the algorithm recursively defines polynomials for the rest of the nodes
in the tree as follows. For each child node x′ of x, the algorithm calls:

- PolySat(Tx, C, δx′), if x′ is a satisfied child node. Note that the value
δx′ = qx(id(x′)) is chosen by B in this case.

- PolyUnsat(Tx, C, e(g, g)qx(id(x′))), if x′ is an unsatisfied child node. The
unknown value e(g, g)qx(id(x′)) is computed by polynomial interpolation.
To see this, we obtain a general formula as follows. First note that:

qx(X) =
∑
i∈γx

qx(i)∆i,γx(X)

= qx(0)∆0,γx(X) +
∑

i∈γx\{0}

qx(i)∆i,γx(X)

︸ ︷︷ ︸
ξx(X) (=known)

= δx ·∆0,γx(X) + ξx(X).

14 Roy D’Souza, David Jao, Ilya Mironov, and Omkant Pandey

Then, the following function is computable by B:

e(g, g)qx(X) =
(
e(g, g)δx

)∆0,γx (X) · e(g, g)ξx(X). (3)

Hence, the procedure can compute the input e(g, g)qx(id(x′)) as needed
above.

Before finishing the execution, the procedure computes the values Âx,i =
e(g, g)qx(i) for every 0 ≤ i ≤ dx using formula (3) and appends it to the
output π.

Having defined the two procedures, the simulator runs PolyUnsat(T , C,PK).
The procedure returns a partially complete output π which includes the commit-
ted polynomials corresponding to every node x in T . To complete the output, B
needs to compute the encapsulations corresponding to every leaf node x. These
are computed as follows and appended to the string π:

1. If x is a satisfied leaf node (i.e., id(x) ∈ C), then value λx = gqx(0) is known

to B. In this case, B generates the encapsulation as usual; choose Rx
$← Zp

and output 〈Bx, Cx〉 where Bx = gRx and Cx = λx · PPRx
i = λx ·BβiRx .

2. If x is an unsatisfied leaf node (i.e., id(x) /∈ C), then value λx = gqx(0) is not
known to B. However, by construction of PolyUnsat, we have that:

λx = gξ1+ab·ξ2 ,

where both ξ1 and ξ2 are known values (computed recursively using in-
terpolations and functions ξx(X) defined above). The simulator sets Rx =
−aξ2/βid(x) + R′x for a randomly chosen R′x ∈ Zp. Let i = id(x), then the
encapsulation of λx includes:

Bx = gRx = g−aξ2/βi+R
′
x = gR

′
x ·A−ξ2/βi ;

Cx = λx · PPRx
i = gξ1+ab·ξ2 ·

(
gbβi

)−aξ2/βi+R′x = gξ1 ·BβiR
′
x .

Hence, B can compute encapsulations for all unsatisfied nodes as well.

Therefore, the simulator is able to answer the Phase 1 queries of A. Further-
more, these queries are distributed identically to that in the original scheme.

Challenge. A sends two distinct equal length messages m0,m1 ∈ G2. The sim-
ulator chooses a random bit ν and responds by sending the following values:
〈C ′,mν ·D〉.

If ν = 0, then D = e(g, g)abc = PK c. In this case, 〈C ′,mν · D〉 is a valid
encryption of mν and distributed identical to the original scheme. Whereas if
ν = 1, D is a random element of G2 and hence the ciphertext 〈C ′,mν · D〉
contains no information about mν .

Phase 2. The simulator acts exactly as it did in Phase 1.

Publicly Verifiable Secret Sharing for Cloud-based Key Management 15

Guess. A will submit a guess ν′ of ν. If ν′ = ν the simulator will output µ′ = 0
to indicate that it was given a valid BDH-tuple otherwise it will output µ′ = 1
to indicate it was given a random 4-tuple.

As shown in the construction, the simulator’s generation of public parameters
and answers to the queries of A in all stages are identical to that of the actual
scheme.

In the case where µ = 1 the adversary gains no information about ν. There-
fore, we have Pr[ν 6= ν′ | µ = 1] = 1

2 . Since the simulator guesses µ′ = 1 when
ν 6= ν′, we have Pr[µ′ = µ | µ = 1] = 1

2 .
If µ = 0 then the adversary sees an encryption of mν . The adversary’s ad-

vantage in this situation is ε by definition. Therefore, we have Pr[ν = ν′ |
µ = 0] ≥ 1

2 + ε. Since the simulator guesses µ′ = 0 when ν = ν′, we have
Pr[µ′ = µ | µ = 0] ≥ 1

2 + ε.
The overall advantage of the simulator in the Decisional BDH game is equal

to 1
2 Pr[µ′ = µ | µ = 0] + 1

2 Pr[µ′ = µ | µ = 1]− 1
2 ≥

1
2 (1

2 + ε) + 1
2 ·

1
2 −

1
2 = 1

2ε.

References

1. Diego F. Aranha, Julio López, and Darrel Hankerson. High-speed parallel software
implementation of the ηt pairing. In Josef Pieprzyk, editor, CT-RSA, volume 5985
of Lecture Notes in Computer Science, pages 89–105. Springer, 2010.

2. Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD
thesis, Israel Institute of Technology, Technion, Haifa, Israel, June 1996.

3. Mihir Bellare and Shafi Goldwasser. Verifiable partial key escrow. In ACM Con-
ference on Computer and Communications Security, pages 78–91, 1997.

4. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM Conference on Computer and Communica-
tions Security, pages 62–73, 1993.

5. George Robert Blakley, Jr. Safeguarding cryptographic keys. In AFIPS 1979,
National Computer Conference, volume 48, pages 313–317, 1979.

6. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryp-
tion without random oracles. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology—EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 223–238. Springer, 2004.

7. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, Advances in Cryptology—CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

8. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. SIAM J. Comput., 32(3):586–615, 2003. Ealier version in [7].

9. Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults (extended ab-
stract). In 26th Annual Symposium on Foundations of Computer Science (FOCS),
pages 383–395. IEEE, 1985.

10. Mache Creeger. Cloud computing: An overview. Queue, 7:2:3–2:4, June 2009.

11. Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.
In 28th Annual Symposium on Foundations of Computer Science (FOCS), pages
427–437. IEEE, 1987.

16 Roy D’Souza, David Jao, Ilya Mironov, and Omkant Pandey

12. Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In G. R. Blakley and David Chaum, editors, Advances in
Cryptology—Proceedings of CRYPTO ’84, volume 196 of Lecture Notes in Com-
puter Science, pages 10–18. Springer, 1985.

13. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984.

14. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juels, Re-
becca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM Conference
on Computer and Communications Security, pages 89–98. ACM, 2006.

15. Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Wieb Bosma,
editor, ANTS, volume 1838 of Lecture Notes in Computer Science, pages 385–394.
Springer, 2000.

16. Antoine Joux. A one round protocol for tripartite Diffie-Hellman. J. Cryptology,
17(4):263–276, 2004. Earlier version in [15].

17. Mike Klien. Six Benefits of Cloud Computing, 2010. http://resource.

onlinetech.com/the-six-benefits-of-cloud-computing/.

18. Luther Martin. Federated Key Management for Secure Cloud Computing.
Presentation by Voltage Security, Inc.: http://storageconference.org/2010/

Presentations/KMS/17.Martin.pdf, May 2010.

19. Silvio Micali. Fair public-key cryptosystems. In Ernest F. Brickell, editor, Advances
in Cryptology—CRYPTO ’92, volume 740 of Lecture Notes in Computer Science,
pages 113–138. Springer, 1993.

20. Silvio Micali and Adi Shamir. Partial key-escrow. Manuscript, 1996.

21. Escrowed encryption standard (EES). FIPS PUB 185, National Institute of Stan-
dards and Technology, February 1994.

22. National Institute of Standards and Technology. NIST Special Publication 800-57:
Recommendation for Key Management — Part 1: General (revised), 2007.

23. Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology—CRYPTO
’91, volume 576 of Lecture Notes in Computer Science, pages 129–140. Springer,
1992.

24. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, Advances in Cryptology—EUROCRYPT 2005, volume 3494 of Lec-
ture Notes in Computer Science, pages 457–473. Springer, 2005.

25. Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and
its application to electronic voting. In Michael J. Wiener, editor, Advances in
Cryptology—CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science,
pages 148–164. Springer, 1999.

26. Michael Scott. MIRACL—A Multiprecision Integer and Rational Arithmetic
C/C++ Library. Shamus Software Ltd, Dublin, Ireland, 2010. Available at
http://www.shamus.ie/.

27. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

28. Victor Shoup. Encryption algorithms—part 2: Asymmetric ciphers. Final Commit-
tee Draft 18033-2, ISO/IEC, December 2004. http://www.shoup.net/iso/std6.

pdf.

29. Markus Stadler. Publicly verifiable secret sharing. In Ueli M. Maurer, editor, Ad-
vances in Cryptology—EUROCRYPT ’96, volume 1070 of Lecture Notes in Com-
puter Science, pages 190–199. Springer, 1996.

Publicly Verifiable Secret Sharing for Cloud-based Key Management 17

A Proof of Soundness

Proof of Soundness. Let U∗ be an arbitrary non-uniform PPT adversary. Let T
be an arbitrary access tree (representing an access structure A), and let S be such
that T (S) = 1. Let (PK ∗, π∗) be the output of U∗ on input T (we assume that
the advice string is in-built in the description of U∗). If Verify(PK ∗, π∗, T) = 1
then we have the following:

1. For a node x, let {Â∗x,i}
dx
i=1 be the values parsed by Verify. From the unique-

ness of the discrete logarithm in the prime-order groups, we have that for
every x and every 0 ≤ i ≤ dx, there exists a unique value α∗x,i such that
Â∗x,i = e(g, g)α

∗
x,i . This fixes a unique polynomial of degree dx for the node

x.Also the algorithm tests that for the root node, Â∗r,0 = PK = e(g, g)s; we
have that q∗r (0) = s.

2. Let x be a leaf node, and let 〈B∗x, C∗x〉 be the parsed encapsulated values.
First, we claim that DecryptNode(π∗,SKS) = gq

∗
x(0) for every x such that

id(x) ∈ S.
From the test in (2), we have that there exist unique R∗x ∈ Zp and λ∗x ∈ G1)
such that: B∗x = gR

∗
x , C∗x = λ∗x · PPR∗x

id(x), and Â∗x,0 = e(g, λ∗x). This implies
that λ∗x = gq

∗
x(0). Observe that the output of DecryptNode(π∗,SKS) is λ∗x if

id(x) ∈ S. This proves the claim.
3. Finally, from the test (1), we have for every node x: q∗x(0) = q∗parent(x)(id(x)).

It follows that for every node x, the value Fx computed by the Reconst
algorithm returns gq

∗
x(0). As a result, the output of the Reconst algorithm

is: Fr = gq
∗
r (0) = SK .

This establishes the soundness of the protocol.

B Empirical benchmarks

In the following tables, we list the observed timings of our implementation of
the GenShare, Verify, and Reconst algorithms. For comparison, we also im-
plemented and measured the performance of the corresponding algorithms in
Schoenmakers’ scheme [25], and both sets of timings are provided in the tables
below. For further details regarding our implementation, see Section 4.

18 Roy D’Souza, David Jao, Ilya Mironov, and Omkant Pandey

80 bit k = 1 5 10 15 20 25 30 35 40 45 50

n = 10 70 80 80
110 110 110

15 110 110 120 110
160 160 160 170

20 160 150 150 150 160
210 210 230 220 220

25 190 190 200 190 200 190
270 260 280 270 280 270

30 230 230 230 220 230 230 230
310 320 320 310 320 320 330

35 270 260 270 270 260 270 270 260
360 370 360 370 370 370 380 390

40 300 300 310 300 300 290 300 300 310
410 420 420 430 420 430 440 430 440

45 350 340 330 350 340 350 350 340 340 340
460 470 470 470 470 480 480 490 480 520

50 380 380 380 370 370 380 380 390 380 370 370
520 520 520 520 520 540 530 540 540 560 540

112 bit k = 1 5 10 15 20 25 30 35 40 45 50

n = 10 320 320 320
360 370 410

15 480 480 480 470
540 560 560 580

20 630 640 670 630 650
740 730 740 750 770

25 790 790 790 810 800 800
910 910 930 930 950 960

30 980 970 960 960 990 970 980
1080 1090 1100 1120 1130 1130 1170

35 1120 1120 1110 1120 1120 1140 1110 1120
1270 1260 1290 1290 1300 1310 1320 1350

40 1280 1290 1300 1280 1370 1280 1270 1280 1280
1440 1440 1450 1460 1480 1490 1500 1520 1540

45 1450 1450 1440 1470 1440 1440 1430 1430 1460 1450
1620 1640 1620 1630 1660 1670 1840 1690 1730 1720

50 1590 1600 1580 1590 1590 1590 1600 1610 1590 1600 1600
1810 1790 1830 1810 1850 1850 1880 1880 1880 1890 1900

128 bit k = 1 5 10 15 20 25 30 35 40 45 50

n = 10 760 760 770
830 830 870

15 1150 1140 1140 1140
1210 1260 1270 1280

20 1530 1520 1520 1560 1520
1600 1630 1640 1670 1750

25 1880 1890 1900 1900 1890 1890
2010 2020 2050 2080 2120 2120

30 2290 2260 2290 2250 2260 2280 2270
2400 2410 2440 2480 2520 2810 2560

35 2700 2650 2680 2650 2660 2650 2670 2700
2830 2830 2880 2880 2900 2940 2990 3020

40 3100 3030 3030 3060 3020 3170 3020 3060 3050
3180 3220 3280 3300 3500 3330 3360 3410 3430

45 3440 3470 3380 3420 3410 3450 3400 3400 3450 3400
3630 3650 3650 3650 3690 3740 3760 3780 3860 3840

50 3800 3800 3810 3810 3790 3780 3780 3790 3780 3770 3940
4000 4040 4090 4070 4120 4430 4150 4250 4240 4230 4290

256 bit k = 1 5 10 15 20 25 30 35 40 45 50

n = 10 44140 44480 44740
30430 31570 32570

15 66920 66620 66790 66410
45660 46530 47870 48840

20 88360 88190 89870 88760 92600
60290 61160 62580 64060 70620

25 111120 110910 111830 111600 110720 110660
75400 76410 77460 78900 80530 81100

30 133120 133640 133580 132860 133010 133350 132520
90520 91350 92510 94550 95400 96240 97790

35 155400 155310 157830 155500 167470 154880 155760 155460
105040 106440 108020 108950 110310 111290 113630 114240

40 178990 180610 193690 176750 179140 180810 177330 177860 178090
120650 121830 122900 123580 125150 126980 127510 129210 129470

45 199700 198990 198270 199030 202850 200080 199290 201540 201210 220940
136270 135750 137610 138630 139540 142110 142130 162080 144850 146050

50 223930 222360 221820 222500 220730 226480 221660 221080 224450 220410 221810
151200 150740 152370 154600 155340 156660 158420 158790 159460 162610 170520

Fig. 2. Time in milliseconds for GenShare, at various security levels, for selected values
of k and n. Top numbers in each cell are for our scheme; bottom numbers are for [25].

Publicly Verifiable Secret Sharing for Cloud-based Key Management 19

80 bit k = 1 5 10 15 20 25 30 35 40 45 50

n = 10 100 100 130
70 80 120

15 140 150 170 220
110 130 180 230

20 180 190 210 260 330
140 150 200 280 370

25 230 240 260 310 380 480
180 200 240 320 440 580

30 270 290 310 360 420 520 630
210 230 280 370 480 620 800

35 320 330 360 390 480 560 670 830
250 270 320 410 550 690 870 1100

40 370 380 400 450 520 610 710 850 1020
280 300 360 460 580 760 940 1180 1450

45 420 420 450 500 570 650 770 910 1090 1250
320 340 400 510 640 810 1020 1300 1610 1860

50 470 470 490 540 620 700 820 970 1110 1330 1490
380 380 440 550 690 880 1100 1390 1640 1980 2310

112 bit k = 1 5 10 15 20 25 30 35 40 45 50

n = 10 410 430 530
300 330 480

15 610 640 720 940
430 570 630 900

20 830 840 950 1150 1390
600 630 790 1160 1470

25 1020 1040 1130 1310 1610 1940
730 780 960 1310 1680 2210

30 1210 1230 1320 1520 1800 2160 2600
880 940 1130 1420 1880 2430 3180

35 1420 1450 1540 1710 1990 2350 2790 3350
1170 1090 1280 1610 2070 2650 3400 4300

40 1600 1700 1820 1930 2220 2560 2990 3700 4310
1170 1230 1440 1780 2260 2890 3670 4580 5710

45 1810 1840 1910 2120 2450 2740 3240 3730 4390 5110
1330 1600 1610 1980 2500 3140 3940 4910 6080 7290

50 2010 2040 2170 2340 2600 2950 3380 3940 4560 5280 6060
1450 1550 1770 2150 2730 3390 4220 5210 6390 7700 9130

128 bit k = 1 5 10 15 20 25 30 35 40 45 50

n = 10 990 1050 1280
690 780 1120

15 1510 1550 1770 2170
1050 1150 1510 2130

20 1980 2040 2310 2700 3280
1390 1490 1880 2510 3510

25 2470 2530 2740 3190 3770 4590
1760 1860 2230 2930 3900 5230

30 3020 3020 3240 3640 4250 5040 6060
2090 2230 2620 3340 4410 5680 7430

35 3520 3560 3780 4200 4760 5570 6560 8380
3020 2600 3030 3750 4830 6220 7940 10060

40 4030 4070 4340 4670 5280 6140 7030 8290 9640
2770 2910 3410 4210 5350 6740 8550 10800 13550

45 4480 4520 4720 5160 5790 6870 7550 8730 10210 11700
3150 3300 3860 4600 5800 7300 9210 11350 14000 16990

50 4960 5140 5410 5610 6220 7020 8030 9210 10580 12200 14240
3480 3670 4200 5200 6270 7930 9810 12260 14930 17960 21640

256 bit k = 1 5 10 15 20 25 30 35 40 45 50

n = 10 67990 70720 79360
28930 31970 45790

15 101660 105260 112520 129060
43570 47030 60520 86390

20 136150 138440 146660 166150 189490
57780 61270 75580 101290 140420

25 173420 173300 182370 200640 222070 265640
72300 76110 90900 117560 156970 207800

30 205330 207350 215660 231710 258000 297980 328120
87170 90880 108450 133560 172690 249110 292050

35 240600 241060 262750 266270 290560 321650 361750 411490
101080 106180 122500 153180 207970 244380 311540 392170

40 274870 276150 288990 299010 325440 355200 397230 448800 496840
115490 121170 137970 168420 207840 262240 330940 413090 509530

45 306960 307270 316040 333910 374740 389810 428760 491120 535690 594150
130950 134880 151680 182950 223810 318080 349830 436530 532520 656010

50 400070 342270 352770 368720 392030 425850 464270 516150 565050 630380 704710
144880 149700 167680 199020 243940 341040 372970 458320 556530 670890 798930

Fig. 3. Time in milliseconds for Verify, at various security levels, for selected values
of k and n. Top numbers in each cell are for our scheme; bottom numbers are for [25].

20 Roy D’Souza, David Jao, Ilya Mironov, and Omkant Pandey

80 bit k = 1 5 10 15 20 25 30 35 40 45 50

n = 10 0 20 110
0 10 50

15 10 30 120 280
0 10 40 110

20 0 30 120 270 490
0 20 50 110 200

25 0 30 120 270 480 850
0 10 40 100 190 300

30 10 30 110 270 480 770 1160
0 10 50 100 190 320 430

35 10 30 110 270 500 780 1150 1600
0 10 50 110 190 290 420 590

40 0 30 120 270 490 780 1130 1560 2080
0 10 50 110 190 290 420 590 770

45 0 30 110 260 490 780 1140 1580 2170 2640
0 10 40 100 180 290 420 580 760 990

50 0 30 110 260 490 790 1130 1590 2080 2790 3300
0 10 50 100 190 290 430 630 760 970 1200

112 bit k = 1 5 10 15 20 25 30 35 40 45 50

n = 10 10 100 460
0 40 190

15 0 100 440 1100
10 50 180 430

20 0 110 460 1090 2000
0 40 180 420 770

25 10 110 450 1070 1960 3190
0 40 180 410 780 1220

30 10 100 440 1060 1960 3140 4660
0 40 180 410 780 1200 1840

35 0 110 460 1080 1970 3160 4630 6410
0 50 180 420 830 1200 1760 2460

40 10 90 460 1060 1970 3160 4590 6430 8490
10 40 180 410 760 1200 1760 2440 3260

45 0 110 440 1120 1960 3130 4820 6370 8420 10900
0 40 180 410 760 1200 1770 2420 3240 4120

50 10 100 460 1070 2070 3160 4610 6350 8400 10730 13570
10 40 180 410 770 1210 1760 2410 3250 4110 5100

128 bit k = 1 5 10 15 20 25 30 35 40 45 50

n = 10 20 220 1020
10 90 440

15 20 220 980 2420
10 100 410 1010

20 10 220 1000 2370 4410
10 100 420 990 1890

25 20 220 1000 2390 4330 7080
0 110 420 990 1850 2930

30 10 220 990 2350 4350 6930 10360
10 90 420 980 1850 2910 4300

35 10 250 1020 2400 4460 6990 10360 14230
0 100 430 990 1820 2900 4250 5920

40 20 210 1000 2350 4340 6960 10190 14120 18830
10 90 430 1000 1840 2900 4230 5880 7960

45 10 230 980 2360 4330 7120 10150 14110 18680 24030
10 110 410 1000 1800 2890 4230 5830 7710 9900

50 10 240 990 2380 4350 6980 10240 14050 18620 23920 30170
0 100 430 980 1830 2930 4220 5900 7820 9900 12510

256 bit k = 1 5 10 15 20 25 30 35 40 45 50

n = 10 510 8330 39510
260 3880 18260

15 520 8670 37310 93260
260 4120 17440 43280

20 530 8720 38750 90380 171110
250 3970 17800 42160 79370

25 510 8670 38060 90820 168180 288340
250 4090 17660 42440 78020 126620

30 510 8310 37160 92560 166860 268980 408860
250 3890 17320 42160 77490 124620 185240

35 510 9400 38790 91470 169770 269710 402200 563480
250 4320 17880 42550 78280 145900 183820 256290

40 520 7930 38490 91830 167840 268260 395790 552200 731230
260 3720 17840 42180 78040 125120 183340 253250 339000

45 520 9140 37070 90830 166960 268720 394180 548450 726240 938150
250 4070 17250 42350 77050 124730 182300 254770 336120 430460

50 510 9080 38140 90530 169500 272900 393910 547660 731220 929300 1169760
250 4150 17670 42880 78680 125350 183860 253640 333800 429270 536560

Fig. 4. Time in milliseconds for Reconst, at various security levels, for selected values
of k and n. Top numbers in each cell are for our scheme; bottom numbers are for [25].

